Reg.	No.	: .		 	••••	••••	 •
Name	:	••••	*****	 			

Sixth Semester B.Sc. Degree Examination, April 2019 First Degree Programme Under CBCSS Physics Core Course – XI PY 1643 : CLASSICAL AND MODERN OPTICS

(2014 Admission Onwards)

SECTION - A

Answer all questions.

Time: 3 Hours

(10×1=10 Marks)

Max. Marks: 80

- 1. Can two electric bulbs with point like filament of the same material each 15 watts and lying close to each other produce interference?
- 2. Explain what happens to the Newton's rings, if the lower glass plate is replaced by a mirror.
- 3. What is limit of resolution?
- 4. Define optic axis.
- 5. What is grating?
- 6. List the characteristics of single mode step index fibre.
- 7. What is normal dispersion?
- 8. Even a small piece of hologram can have complete information about the object. How?
- 9. Define spatial coherence.
- 10. List atleast three pumping methods.

P.T.O.

SECTION - B

Answer any eight questions.

(8×2≃16 Marks)

- 11. What is division of wave front and division of amplitude?
- 12. How will you test the planess of glass plate?
- 13. Distinguish between Fresnel and Fraunhofer diffraction.
- 14. Compare the actions of a zone plate with a convex lens.
- 15. Explain double refraction.
- 16. What is a quarter and half wave plates?
- 17. Give the applications of fibre optic communication system.
- 18. Explain numerical aperture.
- 19. What is the principle of holography?
- 20. Explain the working principle of semi conductor laser.
- 21. What is Rainbow holography?
- 22. What is pulse dispersion?

SECTION - C

Answer any six questions.

(6×4=24 Marks)

- 23. The inclined faces of a biprism (n = 1.5) make angles of 1° with the base of the prism. The slit is 10 cm from the biprism and it is illuminated by light of $\lambda = 5900$ Å. Calculate the fringe width observed at a distance of 1 m from the biprism.
- 24. What is the radius of the first zone in a zone plate of focal length 0.4 m for light of wavelength 5000 Å?
- 25. Calculate the thickness of the quarter wave plate of quartz crystal. Given that $n_e = 1.553$ and $n_0 = 1.544$ and λ of light used = 5000 Å.

- 26. A silica optical fiber of large enough diameter has a core refractive index of 1.50 and cladding refractive index of 1.47. Find
 - a) the critical angle at the core-cladding interface.
 - b) the numerical aperture for the fiber and
 - c) the acceptance angle in air for the fiber.
- 27. Find the minimum number of lines in a grating, which could fully resolve in the second order the sodium doublet of wavelength 589 nm and 589.6 nm.
- 28. A glass wedge of angle 0.01 radian is illuminated by monochromatic light of wavelength 6000 Å falling normally on it. At what distance from the edge of the wedge will the 10th fringe be observed by reflected light?
- 29. Derive the relation between Einstein's co-efficients.
- 30. Newton's rings are observed in reflected light of $\lambda = 5.9 \times 10^{-5}$ cm. The diameter of the 10^{th} dark ring is 0.5 cm. Find the radius of curvature of the lens and the thickness of the air film.
- 31. A step index fibre has a core diameter of 200 µm, its numerical aperture is 0.29. Calculate the number of propagating modes of an operating wavelength of 859 nm.

SECTION - D

Answer any two questions.

(2×15=30 Marks)

- 32. Describe with a neat sketch, Michaelson's interferometer. Explain how it can be used to determine wavelength of light.
- 33. Describe the method of producing and analysing plane, circularly and elliptically polarised light.
- 34. Give the theory of normal and anomalous dispersion and describe how the latter has been studied in the case of sodium vapour.
- 35. With neat ray diagrams, explain the principle of recording hologram and reconstruction of the image.