

Reg.	No.	:	***************************************

Name :

Sixth Semester B.Sc. Degree Examination, April 2019 First Degree Programme under CBCSS PHYSICS

Core Course X PY 1642 : Nuclear and Particle Physics (2013 Admission Onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - A

Answer all questions in one or two sentences. Each question carries one mark.

- 1. What are the constituents of a nucleus? What is meant by atomic number of a nucleus?
- 2. What does electric quadrupole moment of a nucleus signify?
- 3. Define activity of a radioactive sample. Define the unit curie.
- 4. State Gieger-Nuttal law.
- 5. What is the spin state of the deuteron when it is in the ground state?
- 6. Which species of the π meson is exchanged in the proton-proton interaction ?
- 7. Pure sodium iodide is not used in scintillation counter. Why?
- 8. Explain what is meant by the Q-value of a nuclear reaction.
 - 9. What is a breeder reactor?
- 10. Give the constitution of a neutron according to the quark model. (10×1=10 Marks)

P.T.O.

SECTION - B

Answer **eight** questions **not** exceeding a paragraph. **Each** question carries **two** marks.

- 11. Write a note on magnetic moment of the nucleus.
- 12. Describe how the binding energy per nucleon varies with the mass number.
- 13. Describe the origin of gamma rays. What are nuclear isomers?
- 14. State the conservation laws obeyed by radio active decays.
- 15. List the four radioactive series with giving the stable end nucleus in each case.
- 16. What do you understand by secular radioactive equilibrium?
- 17. Briefly explain the properties of nuclear forces.
- 18. Give an account of the mass of the pion based on the range of the nuclear force.
- 19. Explain what is meant by the threshold value of an endoenergic reaction.
- 20. Find the missing particles or elements in each of the nuclear reactions.

i)
$$_{5}B^{10} + _{2}He^{4} \rightarrow ? + _{1}H^{1}$$

ii)
$$_5B^{11} + _2He^4 \rightarrow _7N^{14} + ?$$

- 21. Explain nuclear chain reaction.
- 22. Briefly describe the latitude effect of cosmic rays.

(8×2=16 Marks)

SECTION - C

Answer any six questions. Each question carries four marks.

- 23. The atomic mass of the neon isotope $_{10}$ Ne 20 is 19.992 u. Determine the binding energy of the neon nucleus in MeV. Mass of the proton = 1.007825 u; mass of the neutron = 1.008665 u.
- 24. Half life of radon is 3.82 days. Find the time required for 60% of a sample of radon to decay.

- 25. A piece of wood from the ruins of an ancient dwelling was found to have 13 disintegrations per minute per gram of its carbon content. The activity of carbon in a living wood is 16 disintegrations per minute per gram. Determine how long ago did the sample was cut from the tree. Half life of carbon = 5760 year.
- 26. Discuss the information obtained from proton-proton and proton-neutron scattering experiments regarding the nuclear forces.
- 27. Discuss the meson theory of nuclear force.
- 28. Find the minimum kinetic energy needed by an alpha particle to cause the reaction $N^{14}(\alpha, p)$ O^{17} . Masses of N^{14} , α -particle, proton and O^{17} in unified atomic mass units are 14.00307, 4.00260, 1.00783 and 16.99913 respectively. Express your answer in MeV.
- 29. Describe a method to determine the scattering cross section.
- 30. Describe the proton-proton cycle of thermonuclear reaction.
- 31. Determine the energy released in the fusion reaction ${}_{1}H^{2}+{}_{1}H^{2} \rightarrow {}_{1}He^{3}+{}_{1}H^{1}$. Masses of ${}_{1}H^{2}$, ${}_{1}H^{3}$ and ${}_{1}H^{1}$ are 2.014102 u, 3.01609 u and 1.007825 u respectively where u denotes unified atomic mass unit. (6×4=24 Marks)

SECTION - D

Answer any two questions. Each question carries fifteen marks.

- 32. Describe the liquid drop model of nucleus. How can the semi-empirical mass formula be derived from it? Mention the merits and demerits of this model.
- 33. Discuss the construction and action of a cyclotron. Point out its limitations.
- 34. Briefly discuss nuclear fission and chain reaction. Describe the construction and working of a nuclear reactor.
- 35. Describe the classification of elementary particles. (2x15=30 Marks)