(Pages	: 4))
--------	------	---

Reg. N	10	:	•	• •	•	•		•	•	•	•		•			•		
Name	: .	 									 							

Fourth Semester B.Sc. Degree Examination, May 2021 First Degree Programme under CBCSS

Chemistry

Complementary Course For Physics

CH 1431.1: SPECTROSCOPY AND MATERIAL CHEMISTRY

(2019 Admission Regular)

Time: 3 Hours

Max. Marks: 80

PART - A

Answer all questions, each question carry 1 mark.

- 1. What is Rayleigh scattering?
- 2. What are the ores of Titanium?
- 3. Name the nano materials used in semiconductor
- 4. Define the process roasting.
- 5. What are nano shells?
- 6. What is Wilkinson's catalyst?
- 7. What is the reference materials in NMR spectroscopy?

- 8. What is the selection rule in vibrational spectroscopy?
- Name one example for liquid crystals.
- 10. What is the condition for a molecule to be Microwave active?

 $(10 \times 1 = 10 \text{ Marks})$

PART - B

Answer any eight questions, each question carry 2 marks.

- 11. Differentiate stokes and anti stokes lines.
- 12. How Rotational spectroscopy can be used to determine bond length of a molecule?
- 13. Explain tetrahedral complex with example.
- 14. What are the different types of energy in a molecule?
- 15. Explain the principle in NMR spectroscopy.
- 16. What is zone refining?
- 17. What are types of electronic transitions?
- 18. Explain one bottom up method for synthesis of nano materials
- 19. Write two medical application of nano materials
- 20. What are the types of liquid crystals?
- 21. What are polyacetylenes?
- 22. What are optical properties of nano materials?
- 23. Explain the principle behind SEM.

- 24. What are the types of magnetic materials?
- 25. What is the historical aspect of Nano science?
- 26. What is Faraday's divided metal?

 $(8 \times 2 = 16 \text{ Marks})$

PART - C

Answer any six questions, each question carry 4 marks.

- 27. Explain the process froth flotation and zone refining.
- 28. Describe super conducting materials with example.
- 29. What is the principle of STM?
- 30. What are application of nano materials in robotics and computers?
- 31. Explain Bathochromic shift and Hypsochromic shift with examples.
- 32. Discuss Werner's theory of coordination compounds.
- 33. Explain the formation of high spin complex with example.
- 34. Briefly explain principle and application of rotational spectroscopy.
- 35. Describe advantages and disadvantages of Raman spectroscopy.
- 36. Explain the terms Chemical shift and spin-spin coupling.
- 37. What are the application of coordination complexes?
- 38. Explain the vibration spectra in the case of harmonic oscillator.

 $(6 \times 4 = 24 \text{ Marks})$

PART - D

Answer any two questions, each question carry 15 marks.

- Explain postulates of valance bond theory of coordination complexes. Also explain the drawback of the theory.
- 40. (a) Describe on application of coordination complexes.
 - (b) Discuss Quantum theory of Raman spectroscopy.
- 41. Discuss various process in purification of metals.
- 42. (a) Give an account on synthesis and application of conducting polymers.
 - (b) Explain medical application of Au, Ag and ZnO.
- 43. Describe on various methods for the preparation of nano materials.
- 44. (a) Explain the selection rule in rotational spectroscopy for a diatomic molecule.
 - (b) Give a description on NMR spectroscopy.

 $(2 \times 15 = 30 \text{ Marks})$