1 000100 101	Militi	100	me	18	10
職職	朝	耕	糠	隒	#

(Pages : 3)

F - 4051

Reg. No.:

Name :

Third Semester B.Sc. Degree Examination, January 2019 First Degree Programme Under CBCSS Complementary Course for Physics MM – 1331.1 : MATHEMATICS – III Differential Equations, Theory of Equations and Theory of Matrices (2014 Admission Onwards)

Time: 3 Hours Max. Marks: 80

All the 10 questions are compulsory. Each question carries 1 mark.

- 1. Write the 6th degree polynomial equation having roots $\sqrt{2}$, $i\sqrt{2}$ and $i\sqrt{3}$.
- 2. Solve the equation $x^5 16x = 0$.
- 3. Find the smallest interval with integer end points containing the positive root of the equation $x^2 3 = 0$.
- 4. If f(-1) = 1 and f(1) = -1, is there a root for the equation f(x) = 0 in (-1, 1)?
- 5. Solve the initial value problem $\frac{dy}{dt} y = 0$; $y(0) = \pi$.
- 6. Solve $\frac{d^2y}{dx^2} + \frac{dy}{dx} 6y = 0$.
- 7. Find the particular integral of $\frac{d^2y}{dx^2} 5\frac{dy}{dx} + 6y = e^{5x}$.
- 8. Find the rank of the matrix $\begin{bmatrix} 0 & 2 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -3 \end{bmatrix}$.
- 9. Find A^3 if A is the matrix $\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$.
- 10. Find the eigenvalues of the matrix $\begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 3 \\ -5 & 0 & 0 \end{bmatrix}$.

Answer any 8 questions from among the questions from 11 to 22. Each question carries 2 marks.

- 11. Find the condition that the roots of the equation $x^3 px^2 + qx r = 0$ are in arithmetic progression.
- 12. Solve the equation $x^3 + x^2 + x + 1 = 0$.
- 13. Transform the equation $x^3 + 3x^2 + 5x + 1 = 0$ into an equation lacking the second term.
- 14. If α , β , γ are the roots of the polynomial equation f(x) = 0, prove that $f'(x) = \left(\frac{1}{x \alpha} + \frac{1}{x \beta} + \frac{1}{x \gamma}\right) f(x).$
- 15. Find the general solution of $e^{x}y' y^2 = 0$.
- 16. Solve y' + y x = 0.
- 17. Solve $xy' + y = x^4y^4$.
- 18. Solve y'' + 2y' + 5y = 0.
- 19. Solve that inverse of an orthogonal matrix is orthogonal.
- 20. If $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, show that $A^2 4A + 3I = 0$.
- 21. Find the eigenvalues of the matrix $\begin{bmatrix} 3 & 4 \\ 5 & 2 \end{bmatrix}$.
- 22. Find the rank of the matrix $\begin{bmatrix} 0 & 1 & 2 \\ 4 & 0 & 2 \\ 2 & 1 & 3 \end{bmatrix}$

Answer any 6 questions from among the questions from 23 to 31. Each question carries 4 marks.

- 23. Solve $x^4 + x^3 + 33x^2 + 61x 14 = 0$, given $2 + \sqrt{3}$ is a root.
- 24. Using Newton-Raphson method, find a root of the equation $x^3 + x 1 = 0$ correct to 6 decimal places $(x_0 = 1)$.

- 25. Using Descarte's rule of signs, show that the equation $12x^7 x^4 + 10x^3 28 = 0$ has at least four imaginary roots.
- 26. Find the orthogonal trajectories of the family of parabolas $y = cx^2$.
- 27. Solve $(y 2x^3)dx x(1 xy)dy = 0$.
- 28. Solve $y'' 13y + 12y = e^{-2x}$.
- 29. Solve $x^2y' + 2xy \sin x = 0$.
- 30. Test for consistency and solve x + y + z = 3, x + 2y + 3z = 4, x + 4y + 9z = 6.
- 31. Show that the eigenvalues of a real symmetric matrix are real.

Answer any 2 questions from among the questions from 32 to 35. Each question carries 15 marks.

- 32. Show that the equation $x^4 10x^3 + 23x^2 6x 15 = 0$ can be transformed into a reciprocal equation by diminishing its roots by 2. Hence solve the given equation.
- 33. Solve the equation $x^3 3x^2 + 12x + 16 = 0$ using Cardan's method.
- 34. a) Solve $y'' + 16y = e^{-3x} \cos 4x$.
 - b) Solve the initial value problem $x^2y' y^2y' 2xy = 0$, y(1) = 1.
- 35. Is the matrix $\begin{bmatrix} 2 & -2 & 1 \\ -1 & 3 & -1 \\ 2 & -4 & 3 \end{bmatrix}$ diagonalizables ? If yes, find the diagonal equivalent.