(Pages: 4)

Reg.	No.	:	•		۰	• •					•		w		•		
Name	ъ.																

Second Semester B.Sc. Degree Examination, December 2021.

First Degree Programme under CBCSS

Mathematics

Complementary Course for Phsyics

MM 1231.1 - MATHEMATICS - II - INTEGRATION AND VETORS

(2014-2017 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - 1

All the first ten questions are compulsory. They carry 1 mark each.

- 1. The area A(x) under the graph of f and over the interval [a,x] is x^2-4 . Find the function f and the value of a.
- 2. Evaluate $\int \frac{\sec x}{\cos x} dx$.
- 3. True or False: "If the particle has constant nonzero acceleration, its position versus time curve will be a parabola."
- 4. Find the volume of the solid that is obtained when the region under the curve $y = \sqrt{x}$ over the interval [1,4] is revolved about the x-axis.
- 5. Find the limit of $\lim_{t\to 0^+} (ti + \frac{\sin t}{t}j)$.
- 6. Define inverse-square field.
- 7. Find the divergence of $F(x, y, z) = x^2yi + 2y^3zj + 3zk$.

- 8. Find the ∇f of $f(x,y,z) = xy^2z^3$ at the point (1,1,1).
- 9. Find the outward ux of F(x, y, z) = xi + yj + zk across any unit cube.
- 10. State Gauss Divergence Theorem.

SECTION - II

Answer any 8 questions from among the questions 11 to 22

These questions carry 2 marks each

- 11. Find the area under the curve $f = e^{2x}$ over the interval $[0, \ln 2]$.
- 12. Find parametric equations of the line tangent to the graph of $r(t) = t^2i + (2 \ln t)j$ at the point where t = 1.
- 13. Find the volume of the solid that results when the region enclosed by $y = \sqrt{25 x^2}$ y = 3 and it is revolved about the x-axis.
- 14. Find the area of the surface generated by revolving the curve $x = 9y + 1, 0 \le y \le 2$ about the y-axis.
- 15. Find $\int_{0}^{\frac{\pi}{3}} \int_{0}^{\cos y} x \sin y \, dx \, dy.$
- 16. Find $\int_{1}^{3} \int_{x}^{2} \int_{0}^{\ln z} xe^{y} dy dz dx$.
- 17. Find a unit vector in the direction in which $f(x,y) 4x^3y^2$ increases most rapidly at P = (-1,1).
- 18. Find two unit vectors that are normal to the surface $\sin xz 4\cos yz = 4$ at the point $P = (\pi, \pi, 1)$
- 19. Show that $f(x,y,z) = 2z^3 3((x^2 + y^2)z)$ satisfies Laplace' Equation.
- 20. Determine whether the statement "The line integral of a continuous vector eld along a smooth curve C is a vector". is true or false. Explain your answer
- 21. Show that the line integral $\int_C y \sin x \, dx \cos x \, dy$ is independent of the path.
- 22. If σ is the sphere of radius 2 centered at the origin, then find $\iint_{\sigma} (x^2 + y^2 + z^2) dS$.

SECTION - III

Answer any 6 questions from among the questions 23 to 31

These questions carry 4 marks each

- 23. Find a positive value of k such that the average value of $f(x) = \sqrt{3x}$ over the interval [0, k] is 6
- 24. Find the volume of the solid whose base is the region en- closed between the curve $x = 1 y^2$ and the y axis and whose cross sections taken perpendicular to the y axis are squares.
- 25. Find the volume of the solid that results when the region enclosed by $y = x^2$ and $y = x^3$ is revolved about the line x = 1.
- 26. Use a double integral to and the volume of the tetrahedron bounded by the coordinate planes and the plane z = 4 4x 2y.
- 27. Use a triple integral to and the volume of the solid within the cylinder $x^2 + y^2 = 9$ and between the planes z = 1 and x + z = 5.
- 28. Show that the ellipsoid $2x^2 + 3y^2 + z^2 = 9$ and the sphere $x^2 + y^2 + z^2 6x 8y 8z + 24 = 0$ have a common tangent plane at the point (1,1,2).
- 29. Let k be a constant, F = F(x, y, z), G = G(x, y, z), and $\phi = \phi(x, y, z)$ Show that
 - (a) curl (F + G) = curl F + curl G
 - (b) $\operatorname{div}(\phi F) = \phi \operatorname{div} F + \nabla \phi F$
- 30. Find the area of the surface extending upward from the circle $x^2 + y^2 = 1$ in the xy plane to the parabolic cylinder $z = 1 x^2$.
- 31. Find a nonzero function h for which

 $F(x,y) = h(x)(x \sin y + y \cos y)i + h(x)(x \cos y - y \sin y)j$ is conservative

SECTION - IV

Answer any two questions from among the questions 32 to 35

These questions carry 15 marks each

- 32. (a) Find the area between the curve $y = \sin x$ and the line segment joining the points (0,0) and $(5\pi/6,1/2)$ on the curve
 - (b) Let G be the wedge in the rst octant that is cut from the cylindrical solid $y^2 + z^2 \le 1$ by the planes y = x and x = 0. Evaluate.

$$\iiint_{G} z \, dV$$

- 33. (a) A shell, red from ground level at an elevation angle of 45° hits the ground 24,500 meter away. Calculate the muzzle speed of the shell.
 - (b) Given that the directional derivative of f(x,y,z) at the point (3,-2,1) in the direction of a=2i-j-2k is -5 and that $\|\nabla f(3,-2,1)\|=5$, find $\nabla f(3,-2,1)$.
- 34. (a) $F(x,y,z) = z^2i + 2xj y^3k$; C is the circle $x^2 + y^2 = 1$ in the xy-plane with counterclockwise orientation looking down the positive z-axis. Use Stoke's theorem to evaluate $\oint F.dr$.
 - (b) Use the Divergence Theorem to and the mc of $F(x,y,z) = x^3i + y^3j + z^3k$ across the surface σ with onward orientation; σ is the surface of the cylindrical solid bounded by $x^2 + y^2 = 4$, z = 0 and z = 3.
- 35. (a) Find the work done by the force field

$$F(x,y) = (e^x y^0 3)i + (\cos y + x^3)j$$

on a particle that travels once around the unit circle $x^2 + y^2 = 1$ in the counterclockwise direction.

(b) Evaluate the surface integral $\iint_{\sigma} f dS$ where $d(x,y,z) = x + y : \sigma$; is the portion of plane z = 6 - 2x - 3y in the rst octant.