

(Pages: 4)

Reg. No. :

Second Semester B.Sc. Degree Examination, August 2018
First Degree Programme Under CBCSS
Complementary Course for Physics
MM 1231.1 : MATHEMATICS – II : Integration and Vectors
(2013 Admission)

Time: 3 Hours

Max. Marks: 80

77. Yearly whether the vector Flx

SECTION - I

All the first ten questions are compulsory. They carry 1 mark each.

- 1. Evaluate $\int \frac{t^2 2t^4}{t^4} dt$.
- 2. What is the surface area of the surface of revolution that is generated by revolving the portion of the curve y = f(x) between x = a and x = b about the x-axis?
- 3. Evaluate $\int_{-1}^{0} \int_{2}^{5} dx dy$.
- 4. Find the arc length of the curve $x = \cos 2t$, $y = \sin 2t$, $0 \le t \le \frac{\pi}{2}$.
- 5. Suppose that $\vec{u} \cdot (\vec{v} \times \vec{w}) = 3$, find $(\vec{u} \times \vec{w}) \cdot \vec{v}$.
- 6. Find $\vec{r}'(t)$ where $\vec{r}(t) = \frac{1}{t}i + \tan t j + e^{2t}k$.
- 7. Find the divergence of the radius vector xi + yj + zk.
- 8. Let a, b and c be nonzero real numbers such that the vector field $x^5y^{a_i} + x^by^{c_j}$ is a conservative field. Find a, b, c.
- 9. Find $\int_C -y \, dx + x \, dy$, where C is the square with vertices $(\pm 1, \pm 1)$ oriented counterclockwise.
- 10. Consider the surface integral $\iint_{\sigma} f(x, y, z) dS$ where σ is the parametric surface whose vector equation is $\vec{r}(u, v) = x(u, v) i + y(u, v) j + z(u, v) k$. What should replace dS to evaluate the integral?

SECTION - II

Answer any 8 questions from among the questions 11 to 22. These questions carry 2 marks each.

- 11. Evaluate $\int_{-1}^{2} |2x-3| dx$.
- 12. Find the arc length of the curve $x = \frac{1}{3}(y^2 + 2)^{3/2}$ from y = 0 to y = 1.
- 13. Evaluate $\int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{\sqrt{1-r^2}} zr \, dz \, dr \, d\theta$.
- 14. A particle moves with a velocity of v(t) = 2t 4 m/s along an x-axis. Find the displacement and the distance travelled by the particle during the time interval $0 \le t \le 6$.
- 15. Use a scalar triple product to determine whether the vectors $\vec{u} = \langle 5, -2, 1 \rangle$, $\vec{v} = \langle 4, -1, 1 \rangle$, $\vec{w} = \langle 1, -1, 0 \rangle$ lie in the same plane.
- 16. Find the unit tangent vector to the curve $\vec{r}(t) = (t^2 1) i + t j$ at the point t = 1.
- 17. Verify whether the vector $\vec{F}(x, y, z) = \frac{xi + yj + zk}{\sqrt{x^2 + y^2 + z^2}}$ is irrotational?
- 18. Find the speed and acceleration at time $t = \frac{\pi}{4}$ of a particle moving along the curve $x = 2 \cos t$, $y = 2 \sin t$, z = t.
- 19. Evaluate $\int_C yz \, dx xz \, dy + xy \, dz$ where C is the curve given by $x = e^t$, $y = e^{3t}$, $z = e^{-t}$, $0 \le t \le 1$.
- 20. Use a line integral to find the area of the region enclosed by the triangle with vertices (0, 0), (a, 0) and (0, b) where a > 0, b > 0.
- 21. State Gauss's Divergence theorem.
- 22. Verify whether $\vec{F}(x, y, z) = xyi + x^2j + sinzk$ is a conservative field.

SECTION - III

Answer any 6 questions from among the questions 23 to 31. These questions carry 4 marks each.

- 23. Evaluate $\iiint_G 12xy^2z^3 \ dV$ over the rectangular box G defined by the inequalities $-1 \le x \le 2, \ 0 \le y \le 3, \ 0 \le z \le 2.$
- 24. Find the area of the region enclosed by the curves $y = x^2$, $y = \sqrt{x}$, $x = \frac{1}{4}$, x = 1.
- 25. Find the volume in the first octant bounded by the coordinate planes, the plane y = 4 and the plane $\frac{x}{3} + \frac{z}{5} = 1$.
- 26. Suppose that a particle moves through 3-space so that its position vector at time t is $\vec{r}(t) = e^t i + e^{-t} j + t$ k. Find the curvature of the path at the point where the particle is located at time t = 0.
- 27. Let $f(x, y) = x^2 e^y$. Find the maximum value of a directional derivative at (-2, 0) and find the unit vector in the direction in which the maximum value occurs.

But at Flad the work done by the force t

- 28. Let $\vec{u} = 2i j + 3k$, $\vec{v} = j + 7k$, $\vec{w} = i + 4j + 5k$. Find $(\vec{u} \times \vec{v}) \times (\vec{v} \times \vec{w})$.
- 29. Determine whether $\vec{F}(x, y) = e^x \sin y i + e^x \cos y j$ is a conservative field. If so, find a potential function for it.
- 30. Evaluate $\oint_C (e^x + y^2) dx + (e^y + x^2) dy$ using Green's theorem, where C is the boundary of the region between $y = x^2$ and y = x.
- 31. Use Stoke's theorem to evaluate $\oint_C \vec{F} . d\vec{r}$ where \vec{F} (x, y, z) = $z^2 i + 2xj y^3k$ and C is the circle $x^2 + y^2 = 1$ in the xy plane with counterclockwise orientation looking down the positive z-axis.

SECTION - IV

Answer any 2 questions from among the questions 32 to 35. These questions carry 15 marks each.

- 32. a) Find the volume of the solid that is bounded above and below by the sphere $x^2 + y^2 + z^2 = 9$ and inside the cylinder $x^2 + y^2 = 4$.
 - b) Find the volume of the solid generated when the region enclosed by $y = \sqrt{x}$, y = 6 x and y = 0 is revolved about the x-axis.
- 33. a) A particle moves through 3 space in such a way that its velocity is $\vec{v}(t) = i + tj + t^2k$. Find the coordinates of the particle at time t = 1 given that the particle is at the point (-1, 2, 4) at time t = 0.
 - b) Prove that $\operatorname{div}(\phi \vec{F}) = \phi \operatorname{div} \vec{F} + \nabla \phi \cdot \vec{F}$.
- 34. a) Find the work done by the force field $\vec{F}(x, y) = (e^x y^3)i + (\cos y + x^3)j$ on a particle that travels once around the unit circle $x^2 + y^2 = 1$ in the counterclockwise direction.
 - b) Use the Divergence theorem to find the outward flux of the vector field $\vec{F}(x, y, z) = x^3i + y^3j + z^2k$ across the surface of the region that is enclosed by the circular cylinder $x^2 + y^2 = 9$ and the planes z = 0 and z = 2.
- 35. Find the flux of the vector field $\vec{F}(x, y, z) = z k$ across the outward oriented sphere $x^2 + y^2 + z^2 = a^2$.

31. Use Stoke's theorem to evaluate of Fig. 4. If where F (x, y, z) - p' i + 2x - y'k

and C is the circle $x^2 + y^2 = 1$ or the pyraction counterchoice, who extends that

boundary of the region barwer to yit of an

coking down the positive z-rivi-