(Pages : 4)

Reg.	No.	:	*	••			•	•	•••	•	•			•	•	•	•	•	•	٠	*
Mana																					

Second Semester B.Sc. Degree Examination, May 2019

First Degree Programme Under CBCSS

Complementary Course for Physics

MM 1231.1 : MATHEMATICS II – CALCULUS WITH APPLICATIONS IN PHYSICS – II

(2018 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - I

Answer all ten questions are compulsory, each carries 1 mark each :

- -1. Find the modulus of z = -4 + 3i.
- Define principal argument of a complex number.
- 3. Find all second order partial derivatives of f(x,y,z) = (x+y)(3x+y).
- 4. Find total derivatives of $z = xe^{x-y}$.
- 5. Verify the exactness of the differential xdy + 3ydx.
- 6. Show that (y + z)dx + xdy + xdy + xdz is an exact differential form.
- 7. Find $\iiint_{0}^{1} \int_{0}^{3} dx \, dy \, dz$.

8. If
$$\vec{r}(t) = \cos t \hat{i} + \sin t \hat{j} + 3t^3 \hat{k}$$
 then $\frac{d\vec{r}}{dt}$.

9. If
$$F(x,y,z) = xyz\hat{i} + yz\hat{j} + xz\hat{k}$$
. Find DivF at (-1, 1, 1).

10. If
$$F(x,y,z) = (x+2)\hat{i} + y\hat{j} + z\hat{k}$$
. Find curl F.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions, each carries 2 marks each:

- 11. Verify the result $|z_1 + z_2| = |z_1| + |z_2|$ for $z_1 = -2 + 4i$ and $z_2 = 2 + 3i$.
- 12. Find conjugate z^* of $z = w^{3y+2ix}$ where w = x + yi.
- 13. If $z = re^{i\theta}$, then find the value of $z^n + \frac{1}{z^n}$.
- 14. Show that $\cos ix = \cosh x$.
- 15. Show that $\cosh^2 x \sinh^2 x = 1$.
- 16. Given that x(u) = 1 + au and $y(u) = bu^3$, where a & b are constants. Find rate of change of $f(x,y) = xe^{-y}$ with respect u.
- 17. Show that the function f(x,y) = xy has a saddle point at (0,0).
- 18. Suppose f(x,y,z) be a function defined on a region V in space. Write the formula to find the average value of f in V and hence calculate average of f(x,y,z) = 8xyz over the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1.
- 19. Find $\iint_{0}^{1} xy \, dy \, dx$.

- 20. If $\varphi(x, y, z) = xyz$, find $\operatorname{grad} \varphi$.
- 21. Find Laplacian of $\varphi(x,y) = e^x \cos y$.
- 22. Verify whether the vector field $F(x,y,z) = yz\hat{i} + xz\hat{j} + xy\hat{k}$ is irrotational or not.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer any six questions, each carries 4 marks each:

- 23. Find the principal values of (a) $z = \ln(-i)$ (b) $z = i^{-2i}$.
- 24. Find the solution of the equation $z^3 = 1$.
- 25. Solve the hyperbolic equation $\cosh x 5 \sinh x 5 = 0$.
- 26. Find the Taylor's theorem to find a quadratic approximation of $f(x,y) = xe^y$ about the origin.
- 27. The temperature of a point (x,y) on a unit circle is given by T(x,y) = 1 + xy find the temperature of the two hottest point on the circle.
- 28. Find the area enclosed by the curves $y = x^2$ and $x = y^2$ using the concept of double integral.
- 29. If $x = r \sin \theta \cos \varphi$, $y = r \sin \theta \sin \varphi$ and $z = r \cos \theta$ then find $\frac{\partial (x, y, z)}{\partial (r, \theta, \varphi)}$.
- 30. Show that $curl(grad\varphi) = 0$ for any scalar field φ .
- 31. If $F(x,y,z) = x^2y^2z^2\hat{i} + y^2z^2\hat{j} + x^2z^2\hat{k}$ then find $\nabla \cdot (\nabla \times F)$. (6 × 4 = 24 Marks)

SECTION - IV

Answer any two questions, each carries 15 marks each:

- 32. Find a closed-form expression for the inverse hyperbolic functions.
 - (a) $y = \sinh^{-1} x$
 - (b) $y = \tan^{-1} x$
 - (c) $\frac{d}{dx} \sinh^{-1} x$.
- 33. (a) Find the point P(x,y,z) closest to origin lies on the plane 2x + y z = 5.
 - (b) The plane x + y + z = 1 cuts the cylinder $x^2 + y^2 = 1$ in an ellipse. Find the point on the ellipse that lies closest and farthest from origin.
- 34. (a) Evaluate the double integral $I = \iint_R (a + \sqrt{x^2 + y^2}) dx dy$ where R is the region bounded by the circle $x^2 + y^2 = a^2$.
 - (b) Find the average value of the function f(x,y,z) = xyz over the cube bounded by the coordinate planes, x = 2, y = 2 and z = 2.
- 35. (a) If φ is any scalar field and A is any vector field, show that $\nabla \times (\varphi A) = \nabla \varphi \times A + \varphi \nabla \times A$.
 - (b) Show that $\nabla \cdot (\nabla \phi \times \nabla \varphi) = 0$ where ϕ and φ are scalar fields.
 - (c) If $r = [x\hat{i} + y\hat{j} + z\hat{k}]$, the find ∇r^n , for $n \in N$. (2 × 15 = 30 Marks)