Reg. N	10.	:	 	•••	••	•			٠	•			•	•	• •	,
1212																
Name	:		 		 		 								•	•

Second Semester B.Sc. Degree Examination, December 2021 First Degree Programme under CBCSS

Mathematics

Complementary Course for Physics

MM 1231.1 : MATHEMATICS – II — CALCULUS WITH APPLICATIONS IN PHYSICS — II

(2020 Admission Regular)

Time: 3 Hours

Max. Marks: 80

PART - A

All ten questions are compulsory. Each question carries 1 mark.

- 1. Find the complex conjugate of a + 2i + 3ib.
- 2. State de Moivre's theorem.
- 3. Find the total differential of the function $f(x, y) = x \exp(x+y)$.
- 4. Check whether xdy + 2ydx is exact or not?
- 5. Write down the necessary condition for a stationary point of the function f(x, y).
- 6. Write down the formula for Jacobian.
- 7. Evaluate $\int_{0}^{2} \iint_{0}^{1.3} dz dx dy$.
- 8. Find derivative of $r(t)=t^2i+e^tj-(2\cos\pi t)k$.

- Find gradient of f(x, y) = (x + y). 9.
- Let ϕ be a scalar function. Then *curl* $(grad \phi)$ is —

Answer any eight questions from 11 to 26. Each question carries 2 marks.

- Express $\sin(3\theta)$ and $\cos(3\theta)$ in terms of powers of $\cos\theta$ and $\sin\theta$.
- Evaluate Ln(-i).
- Express $z = \frac{1}{1+i}$ in terms of x+iy.
- Find $f_x(1,3)$ for the function $f(x,y) = 2x^3y^2 + 2y + 4x$.
- Write down Taylor's theorem expansion of a function f(x, y).
- Find the stationary points of f(x, y) = 3xy 6x 3y + 7.
- Show that $f(x, y) = x^2 + y^2$ has a minima at (0, 0).
- Show that $f(x, y) = -x^2 y^2 + 25$ has a maxima at (0, 0).
- Evaluate $\int_{1}^{3} \int_{2}^{4} 40 2xy \ dy \ dx$.
- Find Jacobian of $x = \rho \cos(\phi)$, $y = \rho \sin(\phi)$ with respect to ρ and ϕ .
- Evaluate the triple integral $\int_{-1}^{2} \int_{0}^{3} \int_{0}^{2} 12 xy^{2} z^{3} dz dy dx$.
- 22. Write down the formula for the centre of mass of a solid or laminar body.
- Find the divergence of the vector field $a = x^2 y^2 i + y^2 z^2 j + x^2 z^2 k$.
- Find curl of the vector field $F = x^2 y i (z^3 3x)j + 4y^2 k$. 24.
- Show that curl(r) = 0, where r = xi + yj + zk. 25.
- The position vector of a particle at time t is given by $r(t)=2\cos t i + 2\sin t j$. Find 26. velocity of the particle.

PART - C

Answer any six questions from 27 to 38. Each question carries 4 marks.

- 27. Solve hyperbolic equation $\cos hx 5\sin hx 5 = 0$.
- 28. Find fourth root of i.
- 29. Show that (y+z) dx + xdy + xdz is exact.
- 30. Consider the sphere $x^2 + y^2 + z^2 = 1$. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the point $\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$.
- 31. Locate local maxima and minima of the function $f(x, y) = x^3 \exp(-x^2 y^2)$.
- 32. Find the Taylor expansion, up to quadratic terms x-2, y-3 of $f(x, y) = y \exp(xy)$ about the point x=2, y=3.
- 33. Evaluate $\iint_R (2x y^2) dA$ over the triangular region R enclosed between the lines y = -x + 1, y = x + 1 and y = 3.
- 34. Find the volume of the region bounded by the paraboloid $z=x^2+y^2$ and the plane z=2y.
- 35. Compute the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$ where $x = \frac{v}{u}$, $y = u^2 4v^2$.
- 36. Find the Laplacian of scalar field $\phi = xy^2 z^3$.
- 37. Prove that $curl(grad \phi) = 0$.
- 38. Find $r_{\phi} \times r_{\theta}$ where $r = a \sin \phi \cos \theta i + a \sin \phi \sin \theta j + a \cos \phi k$.

PART - D

Answer any two questions out of questions 39 to 44. Each question carries 15 marks.

- 39. (a) Solve the equation $z^6 z^5 + 4z^4 6z^3 + 2z^2 8z + 8 = 0$.
- 7

(b) Find value of $z=i^{-2i}$.

- 8
- 40. (a) Compute the total differential of $f(x, y, z) = x \sin(y z)$.
- 7
- (b) Locate all relative extrema and saddle points of $f(x, y) = 4xy x^4 y^4$. 8

- 41. (a) Evaluate double integral $I = \iint_{\mathbb{R}} (a + \sqrt{x^2 + y^2}) dx dy$, where R is the region bounded by the circle $x^2 + y^2 = a^2$.
 - (b) Find the mass of tetrahedron bounded by the three coordinate surfaces and the plane $\frac{x}{2} + \frac{y}{2} + \frac{z}{2} = 1$, if its density is given by $3\left(1 + \frac{x}{2}\right)$.
- 42. (a) The position vector of a particle at time t is given by $r(t)=2t^2i+(3t-2)j+(3t^2-1)k$. Find the speed of the particle at t=1 and the component of its acceleration in the direction s=i+2j+k.
 - (b) Show that the divergence of $F(x, y, z) = \frac{c}{\left(x^2 + y^2 + z^2\right)^{\frac{3}{2}}} \left(xi + yj + 2k\right)$ is zero.
- 43. (a) By integrating $e^{(1+i)x}$ and separating real and imaginary parts, find the integrals of $e^x \cos x$ and $e^x \sin x$.
 - (b) Derive the conditions for maxima for a function of two real variables. 8
- 44. (a) Evaluate the integral $I = \int_{-\infty}^{\infty} e^{-(x^2)} dx$.
 - (b) A triangular lamina with vertices (0, 0), (0, 1) and (1, 0) has density function $\rho(x, y) = xy$. Find its total mass.