(Pages: 4)

Reg.	No.	*	*	4			. ,	*	* 1		•	8		*	*		
Nam	ο ·																

Second Semester B.Sc. Degree Examination, December 2021 First Degree Programme Under CBCSS

Mathematics

Complementary Course for Physics

MM 1231.1 MATHEMATICS II — CALCULUS WITH APPLICATIONS IN PHYSICS – II

(2018 and 2019 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All 10 questions are compulsory, each carries 1 mark.

- 1. Find the modulus of z = a ib.
- 2. Find the principal arguments of z = 4i.
- 3. Find all second order partial derivatives of $f(x, y) = 2x^3y^2 + y^3$.
- 4. Find total derivatives of $z = ye^{x+y}$.
- 5. Show that the differential form $(x^2 + 2x)dx + y^2dy$ is exact.
- 6. Show that (y + z)dx + xdy + xdz is an exact differential form.
- 7. Find $\int_{0}^{\pi} \int_{0}^{\pi} dx dy dz$.

8. If
$$\vec{r}(t) = 5t^2\hat{i} + (t+2)\hat{j} = 3t^3\hat{k}$$
 then $\frac{d\vec{r}}{dt}$.

9. If
$$F(x, y, z) = (x + y)\hat{i} + (y + z)\hat{j} + (x + z)\hat{k}$$
. Find DivF at (1, 1, 2).

10. If
$$\varphi(x, y, z) = x + y + z$$
, find $\operatorname{grad} \varphi$.

SECTION - II

Answer any eight questions, each carries 2 marks.

11. Verify the result
$$|z_1 z_2| = |z_1| |z_2|$$
 if $z_1 = 1 + i$ and $z_2 = \frac{2}{i}$.

12. If
$$z = a + ib$$
 then show that $zz^* = |z|^2$.

13. If
$$z = re^{i\theta}$$
 then find the value of $z^n - \frac{1}{z^n}$.

- 14. Show that $\cosh ix \cos x$.
- 15. Show that $\cosh^2 x \sinh^2 x = 1$.
- 16. Find the total derivative of $f(x, y) = x^2 + 3xy$ with respect to x, given $y = \sin^{-1} x$.
- 17. Find the local extreme values of f(x, y) = xy.
- 18. Suppose f(x.y) = xy defined over R in xy-plane given by, $0 \le x$, $y \le 1$, then find average of f over the region R.

19.
$$\int_0^1 \int_0^x (x+y)dydx.$$

20. If
$$\varphi(x, y, z) = x^2 + y^2 + z^2$$
 then find $grad\varphi$ at (1,2,3).

21. Find Laplacian of
$$\varphi(x, y, z) = e^x \sin y + z$$
.

22. Show that
$$F(x, y, z) = (x + y)\hat{i} + (x - y)\hat{j} + (x + z)\hat{k}$$
 is solenoidal.

SECTION - III

Answer any six questions. Each question carries 4 marks.

- 23. Find the derivative of $e^{3x} \cos 4x$ with respect x using complex exponential form
- 24. Find the principal values of (a) $z = \ln(-i)$ (b) $z = i^{-2i}$.
- 25. Find a closed form expression for the inverse hyperbolic function $y = \sinh^{-1} x$.
- 26. Find the Taylor expansion up to quadratic terms in (x 2) and (y 3) of $f(x, y) = ye^{xy}$ about the point x = 2 and y = 3.
- 27. The temperature of a point (x, y) on a unit circle is given by T(x, y) = 1 + xy. Find the temperature of the two hottest point on the circle.
- 28. Find the area bounded by the curves $y = x^2$ above x axis and below the line y = 2 using the concept of double integral.
- 29. If $x = r \cos \theta$ and $y = r \sin \theta$ then show that $\frac{\partial(x,y)}{\partial(r,\theta)} \cdot \frac{\partial(r,\theta)}{\partial(x,y)} = 1$.
- 30. Show that $\nabla \cdot (\nabla \varphi) = \nabla^2 \varphi$ for any scalar field φ and verify for $\varphi(x,y,z) = x^2 + y^2 + z^2$.
- 31. If $F(y,z) = z^2(x^2y^2\hat{i} + y^2\hat{j} + x^2\hat{k})$ then find $\nabla \cdot (\nabla \times F)$.

Answer any two questions, each carries 15 marks.

- 32. (a) Solve the equation $z^6 z^5 + 4z^4 6z^3 + 2z^2 8z + 8 = 0$.
 - (b) Using complex exponential form find $\int e^{ax} \sin bx dx$ and $\int e^{ax} \cos bx dx$.
- 33. Find the stationary points of $f(x, y, z) = x^3 + y^3 + z^3$ subject to the following conditions
 - (a) $g(x, y, z) = x^2 + y^2 + z^2 = 1$.
 - (b) $g(x, y, z) = x^2 + y^2 + z^2 = 1$ and h(x, y, z) = x + y + z = 0.

- 34. (a) Find and expression for a volume element in spherical polar coordinates and hence calculate the moment of inertia about the diameter of a uniform sphere of radius 'a'.
 - (b) Find $\int_{0}^{4} \int_{x=\frac{y}{2}}^{\frac{y}{2}+1} \frac{2x-y}{2} dxdy$ by applying the transformation $u = \frac{2x-y}{2}$ and $v = \frac{y}{2}$.
- 35. (a) Find the unit tangent vector \hat{t} and acceleration \vec{a} of a particle travelling along the trajectory given $\vec{r}(t) = 5\cos t\hat{i} + 5\sin t\hat{j} + 3t\hat{k}$.
 - (b) Show that the acceleration of a particle travelling along a trajectory $\vec{r}(t)$ is given by $\vec{a}(t) = \frac{dv}{dt}\hat{t} + \frac{v^2}{\rho}\hat{n}$, where \hat{t} is the unit tangent vector, v is the speed, \hat{n} is the principal normal vector and ρ is the radius of convergence.