	1	III	Ш	III	H	11
11881168	相動		(\$)(\$	Fish	1881	1881

(Pages : 4)

F - 1867

Reg. No. :
Name :

First Semester B.Sc. Degree Examination, November 2018 First Degree Programme under CBCSS COMPLEMENTARY COURSE FOR PHYSICS MM 1131.1: Mathematics I – Differentiation and Analytic Geometry (2014-2017 Admissions)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All the first ten questions are compulsory. They carry 1 mark each :

- 1. Write down the parametric equation of a cycloid.
- 2. If y = f(x), then the instantaneous rate of change of y with respect to x, when $x = x_0$ is _____
- 3. State mean value theorem.
- 4. Write an example for a homogenous function of degree '3' in two variables.
- 5. State reflection property of an ellipse.
- 6. $\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{2x} =$
- 7. Write down the local linear approximation of f(x) at x_0 .
- 8. $Tanh^{-1}(\frac{1}{2}) =$ _____
- 9. Write down the natural domain for the function $f(x, y) = \frac{\sqrt{4 x^2}}{y^2 + 3}$.
- 10. Write the domain and range of Inx.

SECTION - II

Answer any 8 questions from among the questions 11 to 22. These questions carry 2 marks each :

- 11. Draw the velocity versus time curve for a particle with velocity Vo at time t = 0 and moving with constant acceleration.
- 13. What can you say about the continuity of the function $f(x) = \frac{x^2 + 25}{(x^2 7x + 12)}$?
- 14. Is the graph of f(x) = |x| differentiable at x = 0. Prove your claim.
- 15. Find K if the curve $y = x^2 + k$ is a tangent to the line y = 2x.
- 16. Show that $y = x \sin x$ is a solution of $y'' + y = 2\cos x$.
- 17. Use implicit differentiation and find $\frac{d^2y}{dx^2}$ if $x^3y^3 4 = 0$.
- 18. If $x^2 + y^2 = 1$, where x and y are functions of 't' and $\frac{dx}{dt} = 1$, find $\frac{dy}{dt}$ when $(x,y) = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$.
- 19. Find the local linear approximation of $\frac{1}{x}$ at $x_0 = 2$.
- 20. Find an interval [a, b] on which $f(x) = x^4 + x^3 x^2 + x 2$ satisfies the hypothesis of Rolle's theorem.
- 21. Find the equation of the parabola with vertex at (1, 1) and directrix y = -2.
- 22. Find the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$ if x = 4u + v, and y = 5u 3v.

SECTION - III

Answer any 6 questions from among the questions 23 to 31. These questions carry 4 marks each :

- 23. Suppose that a ball is thrown vertically upward so that the height (in feet) of the ball above the ground 't' seconds after its release is modelled by the function $S(t) = -16t^2 + 29t + 6$, $0 \le t \le 2$.
 - a) Determine the instantaneous velocity of the ball at time t = 0.5 seconds.
 - b) What is the velocity of the ball just before impacting the ground at time t = 2s?
- 24. Show that $\tanh^{-1} x = \frac{1}{2} \log \left(\frac{1+x}{1-x} \right)$ and evaluate $\int_{0}^{\sqrt{2}} \frac{dx}{1-x^2}$.
- 25. Show that the Maclaurin series for cos x converges to cosx for all x.
- 26. Find the radius of convergence and interval of convergence of the series $\sum_{k=0}^{\infty} \frac{(-1)^k x^k}{k!}$.
- 27. Verify Eulers theorem for the Homogenous function $u = x^3 2x^2y + 3xy^2 + y^3$.
- 28. Find the level curves of the function f(x, y) = xy.
- 29. Find the equation of the hyperbola with vertices $(0, \pm 3)$ and assymptotes $y = \pm x$.
- 30. A galss of lemonade with a temperature of 40°F is left to sit in a room whose temperature is a constant 70°F. If the temperature T of the lemonade reaches 52°F in 1 hour, then T is modeled by the equation T = 70 30 e^{-0.5t}, where T is in °F and t is in hours.
 - a) Find the rate of change of temperature with respect to time.
 - b) Find the average temperature T_{ave} of the lemonade over the first 5 hours.
- 31. Find the absolute maximum and minimum values of $f = x^3 3x 2$ in $(0, \infty)$ and state where these occurs.

Activities of the control of the con

SECTION - IV

Answer any two. These question carry 15 marks each:

- 32. a) A closed cylindrical can is to hold 1 liter of liquid. How should we choose the height and radius of the can to minimize the amount of material needed to manufacture the can?
 - b) Use Lagrange's multipliers to find the maximum to find the maximum and minimum values of the function f(x, y) = 3x + 4y on the circle $x^2 + y^2 = 1$.
 - c) Assume that oil spilled from a ruptured tanker spreads in a circular pattern whose radius increases at a constant rate of 2 ft/s. How fast is the area of the spill increasing when the radius of the spill is 60 ft.

33. a) If
$$u = \frac{xy}{x+y}$$
, ST $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u$

- b) If $f(x, y) = y^3e^{-5x}$ find $f_{xy}(0, 1)$.
- c) If $z = \sqrt{xy + y}$, $x = \cos\theta$, $y = \sin\theta$, Use chain rule to find $\frac{dz}{d\theta}$ at $\theta = \frac{\pi}{2}$.
- 34. a) Find the slope of the sphere $x^2 + y^2 + z^2 = 1$ in z direction at the point $\left(\frac{2}{3}, \frac{1}{3}, \frac{-2}{3}\right)$.
 - b) Prove that the equation to the tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ at the point (x_0, y_0) on it is $\frac{xx_0}{a^2} \frac{yy_0}{b^2} = 1$.
 - c) Describe the graph of the equation $y^2 8x 6y 23 = 0$.
- 35. a) Sketch the graph of $\gamma = \frac{6}{2 + \cos \theta}$ in polar coordinates.
 - b) State Kepler's first, second and third laws.
 - c) Sketch the graph of the ellipse $x^2/16 + y^2/9 = 1$ showing its focii.