(Pages: 4)

G - 1465

Reg. No. :

Sixth Semester B.Sc. Degree Examination, April 2019 First Degree Programme under CBCSS MATHEMATICS Core Course – XII MM 1644: Abstract Algebra – II (2014 Admn. Onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All the first 10 questions are compulsory. Each carries 1 mark.

- 1. Find $\phi(25)$ for the homomorphism $\phi: \mathbb{Z} \to \mathbb{Z}_7$ such that $\phi(1) = 4$.
- 2. How many homomorphisms are there of \mathbb{Z} into \mathbb{Z} ?
- 3. Find the order of the factor group $(\mathbb{Z}_4 \times \mathbb{Z}_2)/\langle (2,1) \rangle$.
- 4. The trivial subgroup $N = \{0\}$ of \mathbb{Z} is a normal subgroup. Compute $\mathbb{Z}/\{0\}$.
- 5. The image of a group of 6 elements under a homomorphism may have 12 elements. True or False.
- 6. Compute the product (-3, 5) (2, -4) in the ring $\mathbb{Z}_4 \times \mathbb{Z}_{11}$.
- 7. Find all units in the ring $\mathbb{Z} \times \mathbb{Z}$.
- 8. Find the characteristic of the ring $\mathbb{Z}_3 \times \mathbb{Z}_3$.
- 9. Using Fermat's theorem, find the remainder of 347 when it is divided by 23.
- 10. A ring homomorphism $\phi: R \to R'$ carries ideals of R into ideals of R'. True or False.

-2-

SECTION - II

Answer any 8 questions from this Section. Each question carries 2 marks.

- Show that a group homomorphism φ: G → G' is a one-to-one map if and only if Ker(φ) = {e}.
- 12. Let H be a normal subgroup of G. Then show that $\gamma: G \to G/H$ given by $\gamma(x) = xH$ is a homomorphism with kernel H.
- 13. Does there exist a nontrivial homomorphism $\phi: \mathbb{Z}_3 \to \mathbb{Z}$? If yes, give an example. If not, explain why that is so.
- 14. Show that any group homomorphism $\phi: G \to G'$ where |G| is a prime must either be the trivial homomorphism or a one-to-one map.
- 15. Show that a factor group of a cyclic group is cyclic.
- 16. Let (R, +) be an abelian group. Show that (R, +, .) is a ring if we define ab = 0 for all $a, b \in R$.
- 17. Are the fields $\mathbb R$ and $\mathbb C$ isomorphic ? Justify your answer.
- 18. In the ring \mathbb{Z}_n , show that the divisors of 0 are precisely those nonzero elements that are not relatively prime to n.
- 19. Show that 1 and p 1 are the only elements of the field \mathbb{Z}_p that are their own multiplicative inverse.
- 20. Let F be the ring of all functions mapping $\mathbb R$ into $\mathbb R$ and having derivatives of all orders. Differentiation gives a map $\delta: F \to F$ where $\delta(f(x)) = f'(x)$. Is δ a homomorphism? Why?
- Show that each homomorphism from a field to a ring is either one to one or maps everything onto 0.
- 22. Show that if R is a ring with unity and N is an ideal of R such that $N \neq R$, then R/N is a ring with unity.

10

5

SECTION - III

Answer any 6 questions from this Section. Each question carries 4 marks.

- 23. Let $\phi: G \to G'$ be a group homomorphism. Show that if |G| is finite, then $|\phi[G]|$ is finite and is a divisor of |G|.
- 24. Show that if a finite group G has exactly one subgroup H of a given order, then H is a normal subgroup of G.
- 25. Show that an intersection of normal subgroups of a group G is again a normal subgroup of G.
- 26. Show that if U is the collection of all units in a ring (R, +, .) with unity, then (U, .) is a group.
- 27. Show that every finite integral domain is a field.
- 28. Find all positive integers n such that \mathbb{Z}_n contains a subring isomorphic to \mathbb{Z}_2 .
- 29. Find all solutions of the congruence $155x \equiv 75 \pmod{65}$.
- 30. Let R be a commutative ring with unity of prime characteristic p. Show that the map $\phi_p: R \to R$ given by $\phi_p(a) = a^p$ is a homomorphism.
- 31. A ring R is a Boolean ring if $a^2 = a$ for all $a \in R$. Show that every Boolean ring is commutative.

SECTION - IV

Answer any 2 questions from this Section. Each question carries 15 marks.

- 32. a) Prove or disprove : If d divides the order of G, then there must exist a subgroup H of G having order d.
 - b) Let ϕ be a homomorphism of a group G into a group G'. If K' is a subgroup of G', then show that $\phi^{-1}[K']$ is a subgroup of G.

33. a) Let $\phi: G \to G'$ be a homomorphism with kernel H and let $a \in G$. Prove the set $\{x \in G \mid \phi(x) = \phi(a)\} = Ha$. 5 b) Let H be a normal subgroup of G. Show that the cosets of H form a group G/H under the binary operation (aH) (bH) = (ab)H. 5 c) Show that if H and N are subgroups of a group G, and N is normal in G, then $H \cap N$ is normal in H. Show by an example that $H \cap N$ need not be normal in G. 5 34. a) An element a of a ring R is idempotent if $a^2 = a$. Find all idempotents in the ring $\mathbb{Z}_6 \times \mathbb{Z}_{12}$. 5 b) Show that the unity element in a subfield of a field must be the unity of the whole field. 5 c) Solve the equation $x^2 - 5x + 6 = 0$ in \mathbb{Z}_{+3} . 5 35. a) Show that a division ring contains exactly two idempotent elements. 5 b) Show that the characteristic of a subdomain of an integral domain D is equal to the characteristic of D. 5 c) Show that $2^{11,213} - 1$ is not divisible by 11. 5