inde system in molecule emplies all

Reg. No.:....

Sixth Semester B.Sc. Degree Examination, April 2018 First Degree Programme under CBCSS MATHEMATICS Core Course X MM 1642: Linear Algebra (2013 Admn.)

Time: 3 Hours Max. Marks: 80

SECTION - I I I I I

All questions are compulsory. They carry 1 mark each.

- 1. Show by an example that the matrix multiplication is not commutative.
- 2. Define a nilpotent matrix.
- 3. Give an example of a matrix whose inverse is the same as its transpose.
- 4. Define a Skew-Hermitian matrix.
- 5. Define a Vector Space.
- 6. Define the rank of a linear mapping.
- 7. Define the determinant of a matrix.
- 8. Define a permutation.
- 9. Define the eigen vector corresponding to the eigen value of a matrix.
- 10. Define the signature of a permutation.

SECTION - II

Answer any 8 questions. They carry 2 marks each.

- 11. Prove that the matrix multiplication is associative.
- 12. Prove that if A, B are commutative, then A^T, B^T are commutative.

- 13. Find the equation of the curve obtained by rotating the hyperbola, $x^2 y^2 = 1$, through 45° anti-clockwise about the origin.
- 14. State the conditions for a system of linear equations, AX = B, to be consistent.
- 15. Define the left and the right inverses of a matrix.
- 16. Let V be a vector space, W be a subspace of V and $f: V \to W$ be a linear mapping. Then prove that f(-x) = -f(x) for all $x \in V$.
- 17. Prove that if A is invertible, then det $A^{-1} = \frac{1}{\det A}$.
- 18. State a characterizations of Similar matrices in terms of linear mappings.
- 19. Define the linear span of a set of elements of a vector space.
- 20. Define a determinantal mapping.
- 21. Define the adjoint of a matrix.
- 22. When a linear mapping is diagonalizable?

SECTION - III

Answer any 6 questions. They carry 4 marks each.

- 23. Show that the rows of the matrix, $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ are linearly independent.
- 24. Define the linear span of a set of elements of a vector space, V and prove that it is a subspace of V.
- 25. Use matrix notation to solve the Fibonacci Seers : $a_{n+2} = a_{n+1} + a_n$, $a_0 = 0$, $a_1 = 1$.
- 26. Use Gaussian elimination to solve the following system of linear equations :

$$x + z = 1$$
; $x + y = 2$; $3x + y + z + w = 1$; $y + 2z + w = 2$.

27. Explain the matrix representation of complex numbers.

- 28. If V, W are vector spaces of dimensions m, n respectively and f: V → W, g: V → W are linear mappings, then matrix of f ∘ g = matrix of f × matrix of g with respect to the fixed ordered bases, where f ∘ g is the composition of f and g.
- 29. Prove that a non-empty subset S of a vector space V is a basis of V if and only if any element of V can be uniquely represented as a linear combination of elements of S.
- Prove that the eigen vectors corresponding to distinct eigen values of a matrix are linearly independent.
- Prove that any permutation on a set with p > 2 elements is a composition of transpositions.

SECTION - IV

Answer any 2 questions. They carry 15 marks each.

32. Find the values of k such that the following system of linear equations has a solution

$$x + y + z = 1$$

$$x - 2y + z = 1$$

$$x + 2y + z = k.$$

33. Show that a 2 x 2 matrix is orthogonal if and only if it is of the form,

$$\begin{bmatrix} \alpha & \beta \\ -\beta & \alpha \end{bmatrix} \text{ or } \begin{bmatrix} \alpha & \beta \\ \beta & -\alpha \end{bmatrix}, \text{ where } \alpha^2 + \beta^2 = 1$$

- 34. Show that the set V of complex matrices of the form, $\begin{bmatrix} x & y \\ z & -w \end{bmatrix}$ is a real vector space of dimension, 6.
- 35. Diagonalize the Matrix, $A = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}$.