Reg. No. :

Name :

Sixth Semester B.Sc. Degree Examination, March 2021.

First Degree Programme under CBCSS

Mathematics

Core Course – X

MM 1642 - COMPLEX ANALYSIS II

(2018 Admission Regular)

Time : 3 Hours

Max. Marks: 80

SECTION - A

All the first 10 questions are compulsory. They carry 1 mark each.

- 1. Write the power series representation of $f(z) = \frac{1}{z-1}$ in powers of z.
- 2. If f(z) is analytic inside a circle C with centre at z_0 and $f(z) = \sum_{i=0}^{\infty} a_k (z z_0)^k$. What is the value of a_k ?

3. What is the order of the zero of $z(e^z - 1)$?

- 4. Classify the singularity at z = 0 of the function $f(z) = \frac{\sin z}{z^5}$.
- 5. Define Cauchy principal value of the improper integral $\int_{-\infty}^{\infty} x dx$.

6. State Jordan's lemma.

State Reimann mapping theorem.

8. Define Mobius transformation.

9. What type of singularity the function $e^{1/z}$ has at z = 0?

10. Find the residue at z = 0 for the function $f(z) = \frac{1}{z + z^2}$.

$(10 \times 1 = 10 \text{ Marks})$

SECTION - B

Answer any eight questions (11-26) Each question carries 2 marks

11. Using comparison test, show that the series $\sum_{k=1}^{\infty} \left(\frac{1}{k^2 + 1} \right)$ converges.

12. Find the circle of convergence of the power series $\sum_{k=0}^{\infty} \frac{(z-2)^k}{3^k}$.

13. If the radius of convergence of the power series $\sum_{k=0}^{\infty} a_k Z^k$ is *R*, find the radius of convergence of $\sum_{k=0}^{\infty} k^3 a_k Z^k$.

14. Find the Maclaurin series of sinh z.

15. Find the residue of the function $f(Z) = \frac{z^3 + z^2}{(z-1)^3}$, at z = 1.

16. Determine the zeros and their order of the function $f(z) = z \sin z^2$.

17. Determine the order of the pole and residue of the function $\frac{\sinh z}{z^4}$ at z = 0.

2

- 18. Write down the principal part of the function $z \exp\left(\frac{3}{z}\right) = \left(z+3+\frac{3^2}{2!z}+...\right)$ at its isolated singular point and determine the nature of the singularity.
- 19. Find the residue of $f(z) = \tan z$ at each of its singular points.
- 20. Show that $\int_C \exp\left(\frac{1}{z^2}\right) dz = 0$, where C is positively oriented circle |z| = 1.
- 21. Evaluate $\int_C \cot z dz$, where C denote the positively oriented circle |z| = 2.
- 22. If z_0 is a pole of f(z), show that $\lim_{z \to z_0} f(z) = \infty$.
- 23. Find $\sum_{1}^{\infty} \frac{1}{n^2}$.
- 24. Show that a Mobius transformation, not the identity, has at most two fixed points.
- 25. Define the cross ratio of the four points z, z_1 , z_2 , z_3 and find the cross ratio (z, -1, 0, 1).
- 26. Find the map of the circle |z| = 3 under the transformation w = 2z.

(8 × 2 = 16 Marks)

SECTION - C

Answer any six questions (27-38). Each question carries 4 marks.

- 27. Find a power series representing the function $f(z) = \frac{1}{z^2}$ about z = 2. Also find the radius of convergence.
- 28. State and prove Weierstrass M-test.

- Find the Laurent's series expansion for the function $f(z) = \frac{1}{z(z-1)}$ valid for 29. 1 < |z-2| < 2.
- Let f be analytic at z_0 . Prove that f has a zero of order m for f(z) at z_0 if and 30. only if f can be written as $f(z) = (z - z_0)^m g(z)$ where g(z) is analytic at z_0 and $g(z_0) \neq 0$.
- Find the singularities of the function $f(z) = \frac{4-3z}{z(z-1)(z-2)}$ and hence find the 31. corresponding residues.

32. Evaluate $\int_C \frac{z^3 dz}{(z-2)^2}$ where C is the positively oriented circle |z-1|=2.

of order m at z = a, then f(z) has 33. If а pole show. that $\operatorname{Res}_{z=a}^{n} f(z) = \frac{1}{(n-1)!} \left\{ \frac{d^{n-1}}{dz^{n-1}} [(z-a)^n f(z)] \right\} \text{ at } z = a.$

- 34. Use residues to prove that $\int_0^{2\pi} \frac{d\theta}{\sqrt{2} \cos \theta} = 2\pi$.
- Find the image of the unit circle |z|=1 under the linear fractional transformation. 35. $f(z)=\frac{z+2}{z-1}.$
- Find the Mobius transformation that maps 0, $i_{1} \propto$ onto 0, 1, 2. 36.
- Prove that the transformation $w = f(z) = \frac{1}{z}$ maps circles passing through the 37. origin onto lines not passing through the origin.
- 38. Prove that a cross ratio is invariant under linear fractional transformation.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION – D

Answer any two questions (39-44). Each question carries 15 marks

- 39. (a) Find the zeros of the analytic function $f(z) = z \sin z^2$.
 - (b) Describe the three types of isolated singular points.
 - (c) Determine the order of the rational function $f(z) = \frac{2z+5}{(z-1)(z+5)(z-2)^4}$.
- 40. (a) Use Cauchy's residue theorem to evaluate $\int_C \frac{z+1}{z^2-2z} dz$ around the circle |z|=3 in the positive sense.
 - (b) Use residue theorem to prove that $\int_0^\infty \frac{1}{1+x^6} dx = \frac{\pi}{3}$.
- 41. (a) State and prove Cauchy's residue theorem.
 - (b) Compute P.V $\int_{-\infty}^{\infty} \frac{x \cos x}{x^2 + 9} dx$.
- 42. (a) Find the singularities of the function $f(z) = \frac{z^2 z}{(z+1)^2(z^2+4)}$ and hence find the corresponding residues.
 - (b) Show that $\int_{-\infty}^{\infty} \frac{\cos x}{(x^2+1)^2} dx = \frac{\pi}{e}$.
- 43. (a) Show that $\int_{0}^{2\pi} \frac{d\theta}{1 + a\cos\theta} = \frac{2\pi}{\sqrt{1 a^2}} (-1 < a < 1).$

(b) Use residues to find the Cauchy principle value of $\int_{-\infty}^{\infty} \frac{dx}{(x^2 - 3x + 2)(x^2 + 1)}$

L – 1559

5

44. (a) Find all the points where the mapping $f(z) = \sin z$ is conformal.

(b) Find the Mobius transformation that maps -1, *i*, 1 onto 0, *i*, ∞ .

(c) Discus the image of the circle |z-2|=1 under the transformation $w = \frac{z-4}{z-3}$.

(2 × 15 = 30 Marks)