L - 1555

(P	ag	es	6)	١
•		~	0	,

Reg.	No.	:	 	 •••	 ٠.	• •	•	•••	• •	•	

Name :

Sixth Semester B.Sc. Degree Examination, March 2021 First Degree Programme under CBCSS

Mathematics

Core Course IX

MM 1641: REAL ANALYSIS - II

(2015-2017 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All the first ten questions are compulsory: Each question carries 1 mark.

- 1. State $\in -\delta$ definition of continuity of a function.
- 2. State Discontinuity Criterion.
- 3. Determine the points of continuity of the function defined by $f(x) = [[\sin x]], x \in \mathbb{R}$ where [[x]] denotes the greatest integer less than or equal to x.
- 4. Give an example of a function $f:[0,1] \to \mathbb{R}$ that is discontinuous at every point of [0,1] but |f| is continuous on [0,1].

- State Boundedness theorem.
- 6. Give an example of a function which is monotone but not continuous.
- 7. Find the points of relative extrema of the function $f(x) = |x^2 1|$ for $-4 \le x \le 4$.
- 8. State Cauchy Mean value theorem.
- 9. Evaluate $\lim_{x\to\infty} \frac{x^2}{e^x}$.
- Define Riemann integrable function.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions from this section. Each question carries 2 marks.

11. Discuss the continuity of the function $F: \mathbb{R} \to \mathbb{R}$ at x = 0, defined by

$$F(x) = \begin{cases} 0 & \text{if } x = 0 \\ x \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \end{cases}$$

- Show that rational function is continuous at every real number for which it is defined.
- 13. Give an example of functions f and g that are both discontinuous at a point c in \mathbb{R} such that the sum f+g is continuous at c.

- 14. Show that if $f: I \to \mathbb{R}$ has a derivative a $c \in I$ then f is continuous at c.
- 15. Show that the function $f(x) = x^{1/3}$, $x \in \mathbb{R}$ is not differentiable at x = 0.
- 16. If a > 0, b > 0 and α be any real number with $0 < \alpha < 1$ then prove that $a^{\alpha}b^{1-\alpha} \le \alpha \ a + (1-\alpha)^b$ where equality holds if and only if a = b.
- 17. Let f and g be defined on [a, b], let f(a) = g(a) = 0, and let $g(x) \neq 0$ for a < x < b. If f and g are differentiable at a and if $g'(a) \neq 0$, then prove that limit of $\frac{f}{g}$ at a exists and is equal to $\frac{f'(a)}{g'(a)}$.
- 18. Evaluate $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x$.
- 19. Let f(x) = x for x in [0, 1]. Prove that $f \in \mathbb{R}[0, 1]$ and $\int_{0}^{1} f(x) dx = \frac{1}{2}$.
- 20. Using substitution theorem, evaluate $\int_{1}^{4} \frac{\cos \sqrt{t}}{\sqrt{t}} dt$.
- 21. Prove that the Dirichlet function $f:[0, 1] \to \mathbb{R}$ be defined by $f(x) = \begin{cases} 0 \text{ if } x \text{ is irrational} \\ 1 \text{ if } x \text{ is rational} \end{cases}$ is not Riemann integrable.
- 22. Find $\int_{-10}^{10} sgn(x) dx$.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer any six questions from this section. Each question carries 4 marks.

23. Let $A = \{x \in \mathbb{R} : x > 0\}$. Define $h: A \to \mathbb{R}$ by

$$h(x) = \begin{cases} 0, & \text{if } x \text{ is irrational} \\ \frac{1}{n}, & \text{if } x = \frac{m}{n} \text{ is rational} \end{cases}$$

Where m and n are natural numbers having no common factors except 1. Show that h is continuous at every irrational number in A, and is discontinuous at every rational number in A.

- 24. Let $A, B \subseteq \mathbb{R}$, let $f : A \to \mathbb{R}$ be continuous on A, and let $g : B \to \mathbb{R}$ be continuous on B. If $f(A) \subseteq B$, prove that the composite function $g \circ f : A \to \mathbb{R}$ is continuous on A.
- 25. Prove that if f and g are two functions differentiable at c then their product f g is differentiable at c.
- 26. Given that the function $f(x) = x^n$, $x \ge 0$, $n \in \mathbb{N}$, has an inverse g on $(0, \infty)$, find g'(y) for y > 0.
- State and prove Mean value theorem.
- 28. Let $f: I \to \mathbb{R}$ be differentiable on the interval I. Prove that f is increasing on I if and only if $f'(x) \ge 0$ for all $x \in I$.

- 29. State and prove Darboux's theorem.
- 30. If $f \in \mathcal{R}[a, b]$, then prove that the value of the integral is uniquely determined.
- 31. Prove that if $f:[a,b] \to \mathbb{R}$ is continuous on [a,b], then $f \in \mathcal{R}[a,b]$.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer any two questions from this section. Each question carries 15 marks.

32. (a) State and prove Maximum-Minimum theorem.

8

(b) State and prove chain rule of differentiation.

7

- 33. (a) Let I be an interval and let $f:I \to \mathbb{R}$ be strictly monotone on I. Let J = f(I) and let $g:J \to \mathbb{R}$ be the function inverse to f. If f is differentiable on I and $f'(x) \neq 0$ for $x \in I$, then prove that g is differentiable on J and $g' = \frac{1}{f' \circ g}$. 8
 - (b) State and prove Caratheodory's theorem.

7

34. (a) State and prove L'Hospital's Rule-I.

10

(b) If f and g are in $\mathcal{R}[a, b]$ and $f(x) \le g(x)$ for all x in [a, b] then show that $\int_a^b f(x) dx \le \int_a^b g(x) dx.$

- 35. (a) If $f \in \mathcal{R}[a, b]$, prove that f is bounded on [a, b].
 - (b) State and prove Fundamental theorem of Calculus (Second Form). 8

(2 × 15 = 30 Marks)

7