Reg. No. :

Sixth Semester B.Sc. Degree Examination, April 2018
First Degree Programme under CBCSS

MATHEMATICS

Core Course – IX

MM 1641 : Real Analysis – II

(2014 Admn. Onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All the first 10 questions are compulsory. They carry 1 mark each.

- Give an example of a function f: [0, 1] → R that is discontinuous at every point
 of [0, 1] but such that | f | is continuous on [0, 1].
- Let f: A → R for A ⊂ R. State the sequential criterion for continuity of f at a ∈ A.
- If f: R→R is continuous and takes only rational values then f is constant. True or false?
- 4. Evaluate $\lim_{x\to 0} \left[\frac{1-\cos x}{x^2} \right]$
- 5. State the Interior Extremum Theorem.
- 6. Let $f:(a, b) \to \mathbb{R}$ and $c \in (a, b)$. Explain what is meant by the statement, "f is differentiable at x = c"?
- 7. Suppose that f has an inverse and f(2) = -4, f'(2) = 3/4. If $g = 1/f^{-1}$, what is g'(-4)?
- 8. Find F'(x) when F is defined on [0, 1] by F(x) = $\int_{0}^{x^2} (1+t^3)^{-1} dt$.
- If f(x) = x² for x ∈ [0, 4], calculate the Riemann sum, where P = {0, 1, 2, 4} and the tags are selected at the left end points of the sub-intervals.

10. Let $f \in \mathcal{R}[a, b]$ and define $F(x) = \int_{a}^{x} f$ for $x \in [a, b]$. Evaluate $S(x) = \int_{x}^{\sin x} f$ in terms of F.

SECTION - II

Answer any 8 questions from among the questions 11 to 22. These questions carry 2 marks each.

- 11. Let A, B ⊆ R and let f: A → R and g: B → R be functions such that f(A) ⊆ B.
 If f is continuous at a point c ∈ A and g is continuous at b = f(c) ∈ B, show that the composition g ∘ f: A → R is continuous at c.
- 12. Let I be an interval and let $f: I \to \mathbb{R}$ be continuous on I. If $a, b \in I$ and if $k \in \mathbb{R}$ satisfies f(a) < k < f(b), show that there exists a point $c \in I$ between a and b such that f(c) = k.
- 13. Let I be a closed bounded interval and let $f: I \to \mathbb{R}$ be continuous on I. Show that the set f(I) is a closed bounded interval.
- 14. Suppose that f is continuous on a closed interval I = [a, b], that the derivative f' exists at every point of the open interval (a, b), and that f(a) = f(b) = 0. Show that there exists at least one point c in (a, b) such that f' (c) = 0.
- 15. Let I be an interval and let f: I → R be differentiable on I. Show that if f' is positive on I, then f is strictly increasing on I.
- 16. If f is differentiable on I = [a, b] and if k is a number between f'(a) and f'(b), show that there is at least one point c in (a, b) such that f'(c) = k.
- 17. Let n ∈ N and let f : R → R be defined by f(x) = xⁿ for x ≥ 0 and f(x) = 0 for x < 0. For which values of n is f' continuous at 0 ? For which values of n is f' differentiable at 0 ?</p>
- 18. Evaluate $\lim_{x\to\infty} (1+1/x)^x$.
- 19. Prove that $e^{\pi} > \pi^{e}$.
- 20. If $f \in \mathcal{R}[a, b]$ and $|f(x)| \le M$ for all $x \in [a, b]$, show that $\left| \int_a^b f \right| \le M(b-a)$.

- 21. If f is continuous on [a, b], a < b, show that there exists $c \in [a, b]$ such that we have $\int_{a}^{b} f = f(c)(b-a)$.
- 22. Applying the fundamental theorem, show that there does not exist a continuously differentiable function f on [0, 2] such that f(0) = -1, f(2) = 4, and $f'(x) \le 2$ for $0 \le x \le 2$.

SECTION - III

Answer any 6 questions from among the questions 23 to 31. These questions carry 4 marks each.

- 23. Show by example that a function that is differentiable at every point of R need not have a continuous derivative.
- 24. State and prove the Caratheodory's theorem.
- 25. Let f be defined on R by

$$f(x) = \begin{cases} x^2 + ax + b & \text{if } x \ge 0\\ \sin x & \text{if } x < 0 \end{cases}$$

Is it possible to find a, b such that f is differentiable on \mathbb{R} ? If not, explain why; if yes, give the values of a, b.

- 26. Find the points of relative extrema of the function $f(x) = |x^2 1|$ for $-4 \le x \le 4$.
- 27. State and prove the Taylor's theorem.
- 28. Evaluate $\lim_{x\to 0} \frac{x^2 \sin^2 x}{x^4}$.
- 29. If $f \in \mathcal{R}[a, b]$, show that f is bounded on [a, b].
- State and prove the general form of Integration by Parts for the Riemann integral.
- 31. Show that every continuous function is Riemann integrable.

ow left four (d. a) a palata SECTION - IV de a (d. s) no econolinco al I II de

Answer any 2 questions from among the questions 32 to 35. These questions carry 15 marks each.

- 32. Let I ⊆ R be an interval and let f: I → R be strictly monotone and continuous on I. Show that the function g inverse to f is strictly monotone and continuous on f(I).
- 33. State and prove the Newton's method to estimate a solution of an equation.
- 34. a) If $f:[a,b] \to \mathbb{R}$ is monotone on [a,b], show that $f \in \mathcal{R}[a,b]$.
 - b) Let $K(x) = x^2 \cos(1/x^2)$ for $x \in (0, 1]$ and let K(0) = 0. Find K'(x) and check whether $K' \in \mathcal{R}[0, 1]$.

State and prove the general form of Integration by Parts

- 35. a) Show that, in general, the indefinite integral need not be an antiderivative.
 - b) State and prove the fundamental theorem of calculus (second form).