(Pages : 6)

Reg. No.	:	
----------	---	--

Name :

Fifth Semester B.Sc. Degree Examination, December 2021

First Degree Programme Under CBCSS

Mathematics

Core Course VI

MM 1542 COMPLEX ANALYSIS I

(2018 & 19 Admission)

Time : 3 Hours

Max. Marks: 80

SECTION - 1

(Answer the ten questions are compulsory. They carry 1 mark each)

- 1. Find the quotient $\frac{5}{(1-i)(2-i)(3-i)}$.
- 2. Find the conjugate of $\frac{1+2i}{1-(1-i)^2}$.
- 3. Find the argument of $(\sqrt{3} i)^2$.
- 4. Let $S = \left\{1, \frac{1}{2}, \frac{1}{3}, \dots\right\}$ what is the boundary of S.
- 5. Define an analytic function.

- 6. Write the polynomial $z^4 16$ is factored form.
- 7. Find $\log(-1)$.
- 8. Find the principal value of i^{2i} .
- 9. Compute $\int_{0}^{1} (2t + it^2) dt$.
- **10.** State Cauchy's integral theorem.

SECTION - II

(Answer any eight questions. These questions carry 2 marks each.)

- 11. Find z if $z^2 2z 2 = 0$.
- 12. Evaluate $(1-i)^4$.
- 13. Find the absolute value of $\frac{(1+3i)(1-2i)}{3+4i}$.
- 14. Show that for all z, $e^{2+\pi i} = e^{-z}$.
- 15. Write $f(z) = \frac{z+i}{z^2+1}$ in the form w = u(x, y) + i v(x, y).
- 16. Show that f(z) = Imz is nowhere differentiable.
- 17. Find $\lim_{z \to 5} \frac{3z}{z^2 (5 i)z 5i}$.
- 18. Discuss the analyticity of the function $\frac{z}{\overline{z}+2}$.

- 19. Show that if v is a harmonic conjugate of u in a domain D, then uv is harmonic in D.
- 20. Write the polynomial $(z-1)(z-2)^3$ in the Taylor form, centred at z=2.
- 21. Show that $\tan z$ is periodic with period π .
- 22. Find the maximum value of $|z^2 + 3z 1|$ in the disk $|z| \le 1$.
- 23. Find all values of $(1+i)^{i}$.
- 24. Show that the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is a smooth curve by producing an admissible parametrization.
- 25. Evaluate $\int e^{z} dz$ along the upper half of the circle |z| = 1 from z = 1 to z = -1.
- 26. Compute the integral $\int_{1}^{\frac{e^{z} + \sin z}{z}} dz$, where Γ is the circle |z 2| = 3 traversed once in the counter clockwise direction.

SECTION - III

(Answer any six questions. These questions carry 4 marks each)

- 27. Find the complex numbers z_1 and z_2 that satisfy the system of equations
 - $(1-i)z_1 + 3z_2 = 2 3i$ $iz_1 + (1+2i)z_2 = 1$
- 28. Write the quotient $\frac{1+i}{\sqrt{3}-i}$ in polar form.

M - 1457

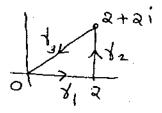
- 29. Prove that $1 + w_m + w_m^2 + ... + w_m^{m-1} = 0$.
- 30. Suppose that f(z) and $\overline{f(z)}$ are analytic in a domain *D*. Show that f(z) is constant in *D*.
- 31. Find the partial fraction decomposition of the rational function $\frac{2z+i}{z^3+z}$
- 32. Establish $\sin z_1 \cos z_2 + \sin z_2 \cos z_1 = \sin(z_1 + z_2)$.
- 33. Determine a branch of $f(z) = \log(z^3 2)$ that is analytic at z = 0 and find f(0) and f'(0).
- 34. Derive the identity $\tan^{-1} z = \frac{i}{2} \log \left(\frac{i+z}{i-z} \right)$.
- 35. Prove that if C is the circle |z| = 3, traversed once, then $\left| \int_{c} \frac{dz}{z^2 i} \le \frac{3\pi}{4} \right|$.
- 36. Determine the possible values for $\int_{\Gamma} \frac{1}{z-a} dz$, where Γ is any circle not passing through z = a, traversed once in the counter clockwise direction.
- 37. Compute $\int_{C} \frac{\sin z}{z^2(z-4)} dz$ where *C* is the circle |z| = 2 traversed once in the positive sense.
- 38. State and explain maximum modulus principle.

SECTION - IV

(Answer any two questions. These questions carry 15 marks each)

- (a) Describe the set of points z in the complex plane that satisfies each of the following.
 - (i) |2z-i| = 4
 - (ii) |z| = Re z + 2
 - (iii) |z-i| < 2.
 - (b) Compute the integral $\int_{0}^{\pi} \cos^{4} \theta \, d\theta$ by using exponential form of $\cos \theta$ and binomial formula.
- 40. (a) Prove that if f(z) is analytic in a domain *D* and if f'(z)=0 everywhere in *D*, then f(z) is constant in *D*.
 - (b) Prove that if f(z) = u(x,y) + i v(x,y) is analytic in a domain D, then each of the functions u(x,y) and v(x,y) is harmonic in D. Construct an analytic function whose real part is u(x,y) = x³ 3xy² + y.
- 41. (a) Prove that $\sin z = 0$ if and only if $z = k\pi$, where k is an integer.
 - (b) Prove that the function e^{z} is one to one on any open disk of radius π .
 - (c) Find all numbers z such that $e^{iz} = 3$.
- 42. (a) Prove that the function *Log z* in analytic in the domain *D* * consisting of all point of the complex plane except those lying on the non positive real axis. Also $\frac{d}{dz}\log z = \frac{1}{z}$, for z in *D* *.
 - (b) Find all the solutions of the equation $\cos z = 2i$.

43. (a) Compute $\int \overline{z}^2 dz$ along the simple closed contour Γ given below.



- (b) Suppose that the function f(z) is continuous in a domain D and has an antiderivative F(z) throughout D. Prove that for any contour Γ lying in D, with initial point z_i and terminal point z_τ, ∫_Γ f(z)dz = F(z_τ)-F(z_i).
- 44. (a) State and prove Morera's theorem.
 - (b) State and prove fundamental theorem of Algebra.