Reg. No.:....

Name:

Fifth Semester B.Sc. Degree Examination, December 2018 First Degree Programme under CBCSS MATHEMATICS Core Course V MM 1542: Complex Analysis – I

(2014 Admn. Onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All the first ten questions are compulsory. They carry 1 mark each.

- 1. Express $\frac{(5+i)(2-i)}{(1-i)}$ in the form a + ib.
- 2. Find the square roots of -1.
- 3. Show that $Im z = \frac{z \overline{z}}{2i}$.
- 4. Represent geometrically $\{z \mid z = \overline{z}\}$.
- Find |e²ⁱ|.
- 6. Define an entire function.
- 7. Express -1 + i in polar form.
- 8. Define a region in a complex plane.
- 9. Define radius of convergence of a power series.
- 10. Write the power series expansion of e4z.

SECTION - II

Answer any 8 questions from among the questions 11 to 22. They carry 2 marks each.

- 11. Find the sum of the complex numbers 3 i and 1 + i geometrically.
- 12. Find the cube roots of 8i.

P.T.O.

F-2466

- 13. State and prove the necessary and sufficient condition for {z_n} to converge.
- 14. Use Cauchy-Riemann equations to verify whether $x^2 + y^2 2xyi$ is analytic.
- 15. Does the series $\sum_{k=1}^{\infty} \frac{1}{k+i}$ converge or diverge. Justify your answer.
- 16. Prove that an analytic function with constant real part is a constant.
- 17. Evaluate $\int_{C} \frac{1}{z} dz$ where C : z(t) = r cost + i r sint, $0 \le t \le 2\pi$, $r \ne 0$.
- 18. Evaluate $\int_{C} (x^2 + iy^2) dz$ where $C : z(t) = t^2 + it^2$, $0 \le t \le 1$.
- 19. Find the unique real solution of $x^3 + 6x = -20$ using cubic method.
- 20. Is the polynomial $x^3 + 3xy^2 x + i(3x^2y + y^3 y)$ analytic? Justify your answer.
- 21. Can a non-constant analytic polynomial be real valued?
- 22. Define a smooth curve.

SECTION - III

Answer any 6 questions from among the questions 23 to 31. They carry 4 marks each.

23. Geometrically represent the following sets.

a)
$$\left\{z: \frac{-\pi}{4} < \arg z < \frac{\pi}{4}\right\}$$

b)
$$\{z:|z-1|<2\}$$

- 24. Prove $|z_1 + z_2|^2 + |z_1 z_2|^2 = 2(|z_1|^2 + |z_2|^2)$.
- 25. If $\sum_{n=0}^{\infty} a_n z^n$ and $\sum_{n=0}^{\infty} b_n z^n$ converge and agree on a set of points with an accumulation point at the origin then $a_n = b_n$ for all n.
- 26. Find the radius of convergence of $\sum_{n=0}^{\infty} \left[1+(-1)^n\right]^n z^n$
- 27. Prove that $\int_{-C} f = -\int_{C} f$.
- 28. State and prove Closed Curve Theorem.

- 29. a) Evaluate $\int_C (z-2i)dz$ where C is $z(t) = t + it^2, -1 \le t \le 1$.
 - b) Also find the above integral along the straight line from -1 + i to 1 + i.
- 30. a) Show that there are no analytic function f = u + iv with $u(x, y) = x^2 + y^2$.
 - b) Prove that $|e^z| = e^x$.
- 31. Suppose f is an entire function of the form f(x, y) = u(x) + iv(y). Show that f is a linear polynomial.

SECTION - IV

Answer any 2 questions from among the questions 32 to 35. They carry 15 marks each.

- 32. Suppose $\overline{\lim} |C_k|^{\frac{1}{k}} = L$, prove that
 - a) If L = 0, $\sum_{k=0}^{\infty} C_k z^k$ converges for all z.
 - b) If $L = \infty$, $\sum_{k=0}^{\infty} C_k z^k$ converges for z = 0 only.
 - c) If $0 < L < \infty$, set $R = \frac{1}{L}$, then $\sum_{k=0}^{\infty} C_k z^k$ converges for |z| < R and diverges for |z| > R.
- 33. a) Prove that a power series is differentiable and derive the formula for its derivatives.
 - b) Prove that if $f(z) = \sum_{n=0}^{\infty} c_n z^n$ has a non-zero radius of convergence, then

$$c_n = \frac{f^n(0)}{n!} \text{ for all } n.$$

- 34. a) Show that the function $f(x, y) = \frac{xy(x iy)}{x^2 + y^2}$, $z \ne 0$ and f(0) = 0 statisfies
 - C. R equations at origin but it is not differentiable at origin.
 - b) Suppose C is a smooth curve of length L, f is continuous on C and that f << M throughout C. Then Prove that $\int f(z) dz << M L$.
- 35. State and prove Integral Theorem.