Reg. No. :

Name :

Fifth Semester B.Sc. Degree Examination, December 2018 First Degree Programme Under CBCSS Mathematics Core Course MM 1541: REAL ANALYSIS – I (2014 Admn. Onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - 1

All the first 10 questions are compulsory. They carry 1 mark each.

1. Define ε -nbd of $a \in R$.

2. If
$$S = \left\{ \frac{1}{n} - \frac{1}{m} : n, m \in N \right\}$$
, find inf S .

- 3. Give an example of a set in R such that its infimum exists but has no upper bounds.
- 4. State Archimedean Property.
- 5. Give an example of a bounded sequence which is not convergent.
- 6. What is the limit of the sequence $\left\{ \left(1 + \frac{1}{n}\right)^n : n \in \mathbb{N} \right\}$?
- 7. Define a contractive sequence of real numbers.
- 8. Find $\lim \left(\frac{2n}{n^2+1}\right)$
- 9. State necessary condition for convergence of a series.
- 10. Define signum function. Is the sequence $(sgn(x_n))$ converges?

SECTION - 2

Answer any 8 questions from this Section. Each question carries 2 marks.

- State order properties of R.
- State and prove Triangle Inequality.
- 13. Determine the set $A = \left\{ x \in \mathbb{R} : \frac{2x+1}{x+2} < 1 \right\}$. 14. If $S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$ then show that inf S = 0.
- 15. Show that a convergent sequence of real numbers is bounded.
- Show that a sequence in R can have at most one limit.
- 17. Show that $\lim \left(\frac{\sin n}{n}\right) = 0$.

 18. Show that the sequence $\left(\frac{1}{n}\right)$ is a Cauchy sequence.
- 19. Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^2 n + 1}$ is convergent.
- 20. Show that $\lim_{x\to 0} \left(x \sin \frac{1}{x} \right) = 0$.
- 21. Show that $\lim_{x\to 0} \frac{1}{x}$ does not exist in R.
- 22. Show that $\lim_{x\to 0} \frac{1}{x^2} = \infty$.

SECTION - 3

Answer any 6 questions from this Section. Each question carries 4 marks.

- 23. State and prove Density Theorem.
- 24. Show that if A and B are bounded subsets of R, then A \cup B is a bounded set and $sup(A \cup B) = sup\{ sup A, sup B\}.$
- 25. State and prove Squeeze Theorem for sequence of real number.
- 26. State and prove Bolzano-Weierstrass Theorem.
- 27. Show that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.

- 28. Show that the series $\sum_{n=1}^{\infty} \frac{1}{n!}$ is convergent.
- 29. If $f: A \to R$ and if c is a cluster point of A, then show that f can have only one limit at c.
- 30. Show that the p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges when p > 1.
- 31. Let $f(x) = e^{1/x}$ for $x \ne 0$. Show that the right-hand limit of f(x) does not exist but the left hand limit exist and equal to 0.

SECTION - 4

Answer any 2 questions from this Section. Each question carries 15 marks.

- 32. Show that there exists a positive real number x such that $x^2 = 2$.
- 33. i) State and prove Nested Intervals Property of real numbers.
 - ii) State and prove Monotone convergence theorem.
- 34. i) Show that a sequence of real numbers is convergent if and only if it is a Cauchy sequence.
 - ii) Show that every contractive sequence is a Cauchy sequence and is convergent.
- 35. i) Show that the geometric series $\sum_{n=1}^{\infty} r^n$ converges when |r| < 1.
 - ii) State and prove sequential criterion theorem.