Reg.	No.	:	***************************************

Fifth Semester B.Sc. Degree Examination, December 2018 First Degree Programme under CBCSS MATHEMATICS Core Course MM1541 : Real Analysis – I [2013 Admn.]

Time: 3 Hours

Max. Marks: 80

SECTION - I

All the first 10 questions are compulsory. They carry 1 mark each.

- 1. If $a \in \mathbb{R}$, prove that $a \cdot 0 = 0$.
- 2. Determine the set A of all real numbers x such that $2x + 3 \le 6$.
- 3. Define absolute value of a real number.
- 4. Define a sequence of real numbers.
- 5. Prove that $\lim_{n \to \infty} \frac{1}{n} = 0$.
- Give an example of an unbounded sequence that has a convergent subsequence.
- 7. State Monotone subsequence theorem.
- 8. Define absolute convergence of a series.
- 9. Find the cluster points, if any, of the set $A = \{1, 2, 3, 4, 5\}$.
- 10. Define right hand limit of a function.

SECTION - II

Answer any 8 questions among the questions 11 to 22. These questions carry 2 marks each.

- 11. State order properties of \mathbb{R} .
- 12. If $a \in \mathbb{R}$ satisfies a . a = a, prove that either a = 0 or a = 1.
- 13. Prove the triangle inequality $|a + b| \le |a| + |b|$; a, $b \in \mathbb{R}$.
- 14. Let A and B be two non empty subsets of $\mathbb R$ such that $a \le b$ for all $a \in A$ and for all $b \in B$. Prove that sup $A \le \inf B$.
- 15. If $X = (x_n)$ and $Y = (y_n)$ are convergent sequences of real numbers and if $x_n \le y_n$ for all $n \in \mathbb{N}$, then prove that $\lim_{n \to \infty} (x_n) \le \lim_{n \to \infty} (y_n)$.
- Give an example of two divergent sequences X and Y such that their sum X + Y converges.
- 17. Prove that $\left(\frac{1}{n}\right)$ is a Cauchy sequence.
- 18. Prove that every Cauchy sequence of real numbers is bounded.
- 19. Prove that $\lim_{n \to \infty} \left(\frac{1}{n^2 + 1} \right) = 0$.
- 20. If the series $\sum x_n$ converges, prove that $\lim x_n = 0$.
- 21. Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n^2 n + 1}$ converges.
- 22. Show that $\lim_{x\to 0} \frac{1}{x^2} = \infty$.

SECTION - III

Answer any 6 questions among the questions 23 to 31. These questions carry 4 marks each.

- 23. Prove that there does not exists a rational number r such that $r^2 = 2$.
- 24. If $S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$, then prove that inf S = 0.
- 25. Prove that a sequence of real numbers can have at most one limit.

- 26. Let $X = (x_n)$ and $Y = (y_n)$ be sequences of real numbers that converge to x and y respectively. Prove that the sequences X + Y and $X \cdot Y$ converge to x + y and xy respectively.
- 27. State and prove Squeeze theorem for sequences.
- 28. Prove that every Cauchy sequence is convergent.
- 29. Check whether the following series are convergent or not.
 - a) $\sum_{n=1}^{\infty} \frac{1}{n!}$
 - b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$
- 30. Prove that a number $c \in \mathbb{R}$ is a cluster point of a subset A of \mathbb{R} if and only if there exists a sequence (a_n) in A such that $\lim (a_n) = c$ and $a_n \neq c \ \forall \ n \in \mathbb{N}$.
- 31. Let $A \subseteq \mathbb{R}$ and $f: A \to \mathbb{R}$ has a limit at $c \in \mathbb{R}$. Prove that f is bounded on some neighbourhood of c.

SECTION - IV

Answer any 2 questions among the questions 32 to 35. These questions carry 15 marks each.

- 32. a) State and prove Archimedean property.
 - b) If S is a subset of $\mathbb R$ that contains at least two points and has the property if x, y \in S with x < y, then [x, y] \subseteq S, prove that S is an interval.
- 33. a) State and prove Monotone Convergence Theorem.
 - b) State and prove Bolzano Weierstrass Theorem.
- 34. a) Let p > 0. Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if and only if p > 1.
 - b) State and prove ratio test.
- 35. a) State and prove the sequential criterion for limits of a function.
 - b) Show that $\lim_{x\to 0} \sin \frac{1}{x}$ does not exist.