(P	a	q	e	S	4)
ı						/

Reg. I	VC).	1	n	-	et		•		•		æ	æ	80		H	a		18	m			•
Name	:						u		 				er		#							a	R

Third Semester B.Sc. Degree Examination, March 2021.

First Degree Programme under CBCSS

Statistics

Complementary Course for Mathematics

ST 1331.1 - STATISTICAL DISTRIBUTIONS

(2019 Admission Regular)

Time: 3 Hours

Max. Marks: 80

SECTION - A

Answer all questions. Each question carries 1 mark:

- 1. What is the mean and variance of a Binomial random variable with n=10 and p=0.2.
- 2. What is characteristic function. Write down the characteristic function of a Poisson distribution.
- 3. Write down the pmf of Geometric distribution.
- 4. Which continuous distribution has lack of memory property?
- 5. What is the use of MGF?
- 6. Give the mean and variance of Gamma distribution.
- 7. State WLLN.

- 8. What is the limiting distribution in Central limit theorem?
- Define raw moment.
- 10. Characteristic function always exist. True or False?

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

Answer any eight questions. Each question carries 2 marks.

- 11. Define Hypergeometric distribution.
- 12. Obtain the mean and variance of Exponential distribution?
- 13. If $X \sim N(0,1)$, what is P(X<1.96)?
- 14. What is the cdf of a Exponential distributions?
- 15. Prove the additive property of Binomial distributions.
- 16. Obtain the expression for central moment in terms of raw moments.
- 17. State and prove Bernoulli Law of Large numbers.
- 18. Show that for iid random variables, sample mean converges in probability to population mean.
- 19. What is Chebyshev's inequality?
- 20. If X is a Normal random variable with mean 2 and variance 2. Find $P(|X_n-2|>\sqrt{21}.96)$.
- 21. What is the pdf of Standard Normal distribution. Give mean and variance.
- 22. If X is a random variable with distribution function F(x), what are the properties of F(x).
- 23. Obtain the moment generating function of Exponential distribution.

- 24. What are the first and second raw moment of Hyper-geometric distribution?
- Show that sum of Exponential distribution follows Gamma distribution.
- 26. X follows N(0,I), Find the distribution of $Y = \frac{x-5}{2}$.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Answer any six questions. Each question carries 4 marks.

- 27. Derive variance of Normal distribution.
- 28. Find mean and variance of Poisson distribution using MGF
- 29. Derive the distribution of sum of two Normal distribution.
- 30. Find the mode of the Normal distribution.
- 31. Explain the fitting of Binomial distributions.
- 32. Find the coefficient of variation of a Exponential distribution.
- 33. If X is a continuous random variable with pdf $f(x) = \begin{cases} 3e^{-3x}, x > 0 \\ 0, & elsewhere \end{cases}$, then P(X < 3) =
- 34. If $X \sim Poisson(6)$, then find the distribution of X + a
- 35. State and prove memory less property of Exponential distribution.
- 36. Obtain the Poisson distribution as a limiting form of Binomial distribution.
- 37. Find the mean and variance of Beta distribution of first kind.
- ^{38.} If $\{X_i\}$ is a sequence of i.i.d random variables with mean 0 and variance 1. Show that sample mean converges in probability to 0.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Answer any two questions. Each question carries 15 marks

39. Fit the Poisson distribution for the following data.

X 0 1 2 3 4 5 6 7 Frequency 7 6 19 35 30 23 7 1

- Show that Binomial distribution converges to Normal distribution.
- 41. (a) Prove the additive property of Gamma distribution.
 - (b) Derive the first two central moments of Normal distribution using MGF.
- 42. (a) What is the probability of obtaining more than 1499 heads in 1500 tosses of a fair coin.
 - (b) Derive the mgf of Binomial distribution and hence obtain the first three central moments.
- 43. (a) Show that sum and difference of two Normal random variables are Normal.
 - (b) Obtain the mean and variance of Geometric distribution.
- 44. (a) Define Uniform distribution. Derive the mean and variance.
 - (b) Derive the recurrence relation for probabilities of Binomial distribution.

 $(2 \times 15 = 30 \text{ Marks})$