	(Pages: 4)	G – 2442
R	eg. No. :	
N	lame :	
	Second Semester B.Sc. Degree Examination, May 2	2019
	First Degree Programme Under CBCSS	
	Complementary Course for Mathematics	
	ST 1231.1 : RANDOM VARIABLES AND ANALYSIS OF BIVA	RIATE DATA
	(2014-17 Admissions)	
Tii	ime : 3 Hours	Max. Marks : 80
	SECTION - A	
An	nswer all questions. Each question carries 1 mark :	
1.	Write the necessary and sufficient condition for a function is sa mass function.	id to probability
2.	Two random variables are said to be independent if ——————	
3.	Define discrete random variables.	
4.	Let $F(x,y)$ represents the distribution function of (X,Y) , the	$P(+\infty, +\infty) =$
5.	If the third central moment is positive then the shape of the freq be ————.	uency curve will
6.	If $E(X) = 2$, then $E(3X + 1) =$.	
7.	Let X and Y be two independent random variables with MGF N respectively, then $M_{X+Y}(t)$ ————————————————————————————————————	$M_X(t)$ and $M_Y(t)$

- 8. Write the normal equations for $Y = aX^b$.
- Range of correlation coefficient is _______.
- 10. Let $b_{XY} > 1$, then b_{YX} is ———.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

Answer any eight questions. Each question carries 2 marks:

- Define probability mass function.
- Define conditional density.
- 13. Write the properties of a characteristic function.
- 14. Define conditional expectation.
- 15. Explain principle of least square.
- 16. Show that the correlation coefficient is invariant under location transformation.
- 17. Write the properties of scatter diagram.
- 18. What are the two regression lines, explain?
- 19. Define Spearman rank correlation.
- 20. Explain the transformation of a discrete random variable.
- 21. Write the properties of correlation coefficient.
- 22. What is relation connecting correlation coefficient and regression coefficients?

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Answer any six questions. Each question carries 4 marks:

- 23. For a pair (X,Y) of continuous random variables, show that E(X+Y)=E(X)+E(Y).
- 24. Let X be a r.v with $f(x) = 2e^{-2x}$, x > 0 and f(x) = 0, elsewhere. Obtain mean and variance of X.
- 25. State and prove addition theorem of expectation.
- 26. The joint probability distribution of two random variables is given by $f(x,y) = k(2x+y)^2$ for x = 0, 1, 2 and y = -1, 0, 1. Find the conditional distributions of X given Y = -1 and Y given X = 1.
- 27. Two r.v's X and Y have the joint p.d.f given by $f(x,y) = Kx^2y^3$, 0 < x < y < 1, f(x,y) = 0, elsewhere. Find the value K.
- 28. Derive the normal equations for $Y = ae^{bX}$.
- 29. Distinguishing between linear and curve i-linear fitting.
- 30. Find spearman rank correlation for the following data:

X 14 16 17 19 14 13 16

Y 10 11 12 10 13 13 10

31. Find the correlation coefficients from the two regression equations 5X + 3Y = 21 and 3X + 4Y = 12.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Answer any two questions. Each question carries 15 marks:

- 32. Let X be discrete random variable function $f(x) = p(1-p)^x$, for 0 , <math>x = 0, 1, 2,; 0, otherwise. Then
 - (a) Show that f(x) be probability mass function
 - (b) Find Mean and variance
 - (c) Find the distribution for Y = X + 1.
- 33. Let f(X,Y) = K, 0 < x < y < 1; 0, otherwise, be a bivariate probability density function of (X,Y). Then find
 - (a) Correlation between X and Y
 - (b) $E[{X | Y}]$
 - (c) P[X = Y].
- 34. Fit the model $Y = aX^b$ for the following data:

35. The following data relate to the height of the plants and the weight of yield per plot recorded from 9 plots. Calculate the regression coefficients and hence correlation coefficient.

Height (in cms) 28 32 26 31 37 26 36 34 47 Frequency 72 78 67 89 92 69 76 70 89

 $(2 \times 15 = 30 \text{ Marks})$