(Pages: 4)

Reg.	No	Э.			*		w	×	ø	R	*	*	w	M	#	×	*	M	*	*		100	*	*	*	
Name	٠.				_	_	_							*												•

Second Semester B.Sc. Degree Examination, December 2021 First Degree Programme Under CBCSS

Mathematics

Foundation Course – II

MM 1221 : FOUNDATIONS OF MATHEMATICS (2018 & 2019 Admission)

Time: 3 Hours Max. Marks: 80

SECTION - I

All the first ten questions are compulsory. They carry 1 mark each.

- 1. What is antecedent in a conditional statement?
- Define tautology.
- 3. Give the negation of "S is compact and convex."
- 4. Express the statement "If x is greater than 1, then x^2 is greater than 1" using quantifiers.
- 5. Define half-open Intervals.
- 6. Let L be the length of the curve $x = \ln t, y = \sin t (1 \le t \le \pi)$. Find an integral expression for L.
- 7. Write the formula for the area A of the region R enclosed by the polar curve $r = f(\theta)(\alpha \le \theta \le \beta)$ and the lines $\theta = \alpha$ and $\theta = \beta$.

- 8. If v = <-2, 0,1> and w = <3,5, -4>, the find w 2v.
- 9. Express $u \times v$ as a determinant.
- 10. Define trace of a surface in a plane.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions from among the questions 11 to 22. These questions carry 2 marks each.

- 11. Draw the truth table of the biconditional statement.
- 12. What are the two types of quantifiers?
- 13. Prove that $(\sim p \Rightarrow c) \Leftrightarrow p$.
- 14. Prove that $A \cap (U \setminus B) = A \setminus B$, where A and B be any two sets and U is the universal set.
- 15. Prove that (a,b) = (c,d) if and only if a = c and b = d.
- 16. Define equivalence relation. Give an example.
- 17. Eliminate t and establish a relation between x and y, given x = 2t 3, y = 6t 7.
- 18. Find the slope of the tangent line to the unit circle $x = \cos t$, $y = \sin t$ at the point $t = \frac{\pi}{6}$.
- 19. Find the circumference of a circle having radius 'a' whose parametric equation is $x = a \cos t$, $y = a \sin t$.
- 20. Find the center and radius of the sphere $x^2 + y^2 + z^2 2x 4y + 8z + 17 = 0$.
- 21. Find a vector that is orthogonal to both of the vectors u = <2, -1, 3> and v = <-7, 2, -1>.
- 22. Calculate the scalar triple product $u.(v \times w)$ of the vectors u = 3i 2j 5k, v = i + 4j 4k, w = 3j + 2k.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer any six questions from among the questions 23 to 31. These questions carry 4 marks each.

- 23. Prove that $p \Rightarrow q$ and $\sim q \Rightarrow \sim p$ are logically equivalent.
- 24. Prove that "For every $\varepsilon > 0$ there exists $\delta > 0$ such that $1 \delta < x < 1 + \delta \Rightarrow 5 \varepsilon < 2x + 3 < 5 + \varepsilon$ ".
- 25. Let f(x) be an integrable function. If $\int_0^1 f(x) \neq 0$, then prove that there exists an x in [0,1] such that $f(x) \neq 0$.
- 26. Sketch the trajectory over the time interval $0 \le t \le 10$ of the particle whose parametric equations of motion are $x = t 3\sin t$, $y = 4 3\cos t$.
- 27. Without eliminating the parameter, find dy/dx and d^2y/dx^2 at (1, 1) and (1, -1) on the semicubical parabola given by the parametric equations $x = t^2, y = t^3$.
- 28. Sketch the graph of the equation $r = \sin \theta$ in polar coordinates by plotting points.
- 29. If u and v are nonzero vectors in 2-space or 3-space, and if θ is the angle between them, then prove that $\cos \theta = \frac{u.v}{\|u\| \|v\|}$.
- 30. Let $v = \langle 2, 3 \rangle$, $e_1 = \left\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle$, $e_2 = \left\langle -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle$. Find the scalar components of v along e_1 and e_2 and the vector components of v along e_1 and e_2 .
- 31. Find the orthogonal projection of v = j + j + k on b = 2i + 2j, and then find the vector component of v orthogonal to b.

 $(6 \times 4 = 24 \text{ Marks})$