M - 2334

(Pages: 4)

Reg. No.	**			18	*		*	98				**	10	ŵ			70	w	10					ø			n			•
----------	----	--	--	----	---	--	---	----	--	--	--	----	----	---	--	--	----	---	----	--	--	--	--	---	--	--	---	--	--	---

Name:.....

Second Semester B.Sc. Degree Examination, December 2021

First Degree Programme Under CBCSS

Mathematics

Foundation Course II

MM 1221 - FOUNDATIONS OF MATHEMATICS

(2014-2017 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - I

Answer all questions. Each question carries 1 mark.

Answer in one word to a maximum of 2 sentence.

- 1. Find the order of 2 modulo 7.
- 2. Find the inverse of [3] in Z/5Z.
- 3. In which congruence class in Z/3Z is 3295.
- 4. Find the x-coordinates of all inflection points of $3x^4 4x^3$.
- 5. Verify that $\phi(ab) = \phi(a) \cdot \phi(b)$ when a = 4, b = 7.
- 6. Evaluate $\int \frac{\sec^2 x}{1 + \tan x} dx$.

7. Find
$$\int_{1}^{5} f(x) dx$$
 if $\int_{0}^{1} f(x) dx = -2$ and $\int_{0}^{5} f(x) dx = 1$.

- 8. Find the average value of $f(x) = x^2$ over [0, 2].
- 9. Find the polar co-ordinates of the point whose rectangular co-ordinates are $\left(-\sqrt{3},1\right)$ satisfying $r\geq 0$ and $0\leq \theta\leq 2\pi$.
- 10. Find the eccentricity and the distance from the pole to the directrix of the conic $r = \frac{3}{2 + \sin \theta}$.

SECTION - II

Answer any eight questions (11-22). Each question carries 2 marks.

- 11. In Z/14Z, solve [6] X = [10].
- 12. In Z / 13Z, find the inverse of [2] [4], [5] and [7].
- 13. Examine whether $\{1, 3, 5, 7, 9, 11, 13\}$ is a complete set of representatives for Z/7Z.
- 14. Write down the addition table for arithmetic modulo 5.
- 15. If p is prime, prove that $\phi(p) = p 1$.
- 16. Find remainder when 2¹⁰⁰⁰ is divided by 17.
- 17. Evaluate $\int_{0}^{3} f(2x) dx$ if $\int_{0}^{6} f(2x) dx = 3$.
- 18. Evaluate $\int_{-1}^{1} x |x| dx$.

- 19. Find the displacement and distance travelled during the time interval $0 \le t \le 3$ if the velocity function is $v(t) = t^2 - 2t$.
- Find area of the surface that is generated by revolving the portion of the curve $y^2 = x$ from origin to the point where x = 2 about the x-axis.
- Evaluate $\int_{1/3}^{\pi/2} \sin \theta \left(1 4 \cos^2 \theta\right) d\theta.$
- Find the entire area within the cardioids $r = 2 + 2 \cos \theta$. 22.

Answer any six questions (23-31). Each question carries 4 marks.

- Find the orders of the non zero elements of Z/5Z.
- In $Z \mid mZ$ show that [a] is a unit if and only if (a, m) = 1.
- State Fermat's theorem and verify if for a = 3 and p = 7. 25.
- Find the exact arc length of the curve $y = 3x^{3/2} 1$ from x = 0 to x = 1.
- Evaluate without finding anti-derivative :

(a)
$$\int_{-1}^{2} (x+2) dx$$

(a)
$$\int_{-1}^{2} (x+2) dx$$

(b) $\int_{0}^{2} \sqrt{4-x^2} dx$.

Suppose that a curve y = f(x) in the xy-plane has the property that at each point (x, y) on the curve, the tangent line has slope x^2 . Find an equation for the curve given that it passes through the point (2, 1).

- 29. Find the volume of the solid generated by the revolution of the loop of the curve $y^2 = x^4(x+2)$ about the x-axis.
- 30. Find the surface area generated by revolving one arch of the cycloid $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$, $0 < \theta < 2\pi$ about the x-axis.
- 31. Find the relative extrema of $f(x, y) = x^3y^2(12 x y)$.

SECTION - IV

Answer any two questions (32-35). Each question carries 15 marks.

- 32. (a) Prove that, if n is positive and a is prime to $na^{\phi(n)} \equiv 1 \pmod{n}$. Verify the result for m = 14 and a = 5.
 - (b) If e is the order of a modulo m and $a^f \equiv 1 \pmod{m}$, prove that e divides f.
- 33. (a) Find the order of [2] in Z/mZ where
 - (i) m = 11
 - (ii) m = 31
 - (b) Show that $\frac{n^5}{5} + \frac{n^3}{3} + \frac{7n}{15}$ is an integer for all n.
- 34. (a) Use cylindrical shells to find the volume of the solid generated when the region enclosed between $y = x^3 3x^2 + 2x$ over [0, 1] is revolved about the *y*-axis.
 - (b) Find the area enclosed by the curve $x^{2/3} + y^{2/3} = a^{2/3}$.
- 35. (a) State the horizontal line test. Use the horizontal line test to show that $f(x) = x^2$ has no inverse but that $f(x) = x^3$ does.
 - (b) Sketch the graph of the equation $r = \sin \theta$ in polar coordinates.