Reg. No	٥.	:	* 1	 • •	 		••			• 1	••	• •		w :	
Name :															

First Semester B.Sc. Degree Examination, November 2018 First Degree Programme Under CBCSS **Complementary Course for Mathematics** ST 1131.1: DESCRIPTIVE STATISTICS AND INTRODUCTION TO **PROBABILITY**

(2014 Admn. - 2017 Admn.)

Time: 3 Hours

Max. Marks: 80

SECTION - A

Answer all the questions. Each carries one mark.

- 1. Give one advantage of primary data over secondary data.
- 2. 'Histogram can be drawn only for continuous data'. Is the statement true or false?
- 3. What do you mean by a time series data?
- Define non-sampling errors.
- 5. Which average is suitable for ordinal data?
- Define geometric mean.
- 7. A set of 10 observations has standard deviation 3. If all the values in the set are multiplied by 10 then find the standard deviation of the new set of observations.
- 8. Give an example of exhaustive events.
- 9. Who introduced empirical definition of probability?
- 10. Let P(A) = 0.4 and $P(A \cup B) = 0.6$. For what value of P(B) are A and B mutually (1×10=10 Marks) exclusive?

SECTION - B

Answer any eight questions. Each carries two marks.

- 11. Define a random sample.
- 12. Give an example of misuse of statistics.
- 13. Give a situation where median is the most suitable average.
- 14. What is the advantage of using coefficient of variation instead of standard deviation?
- 15. What is the purpose of drawing a box plot?
- 16. Define kurtosis.
- 17. What do you mean by statistical regularity?
- 18. Give axiomatic definition of probability.
- 19. Show that sum of squares of deviations of observations is minimum when it is taken from arithmetic mean.
- 20. Use the axioms of probability to show that $P(AB^c) = P(A) P(B)$.
- 21. If the sample space $S = \{1, 2, ..., 10\}$ and the events $A = \{1, 3, 5, 7, 9\}$, $B = \{1, 2, 3, 4, 5, 6\}$ and $C = \{5, 6, 7, 8, 9, 10\}$ then obtain the events a) $A \cap (B \cup C)$ b) AB^c .
- 22. Using the frequency definition of probability show that $P(A^c) = 1 P(A)$.

(2×8=16 Marks)

SECTION - C

Answer any six questions. Each carries four marks.

- 23. Discuss the main characteristics of an ideal questionnaire.
- 24. From the following stem and leaf chart

Stem	Leaf .
5	2
6	5
8	0000222455688
9	01568
10	0

Find mode and quartile deviation.

- 25. State and prove algebraic properties of arithmetic mean.
- 26. Compute mode from the following data.

Class 0-4 5-9 10-14 15-19 20-24 25-29 Frequency 6 15 28 24 12 5

27. Price in rupees of a particular commodity in five months at two regions are as follows:

Region A : 20 22 19 22 23 Region B : 18 12 10 20 15

Compare the consistency of the prices in the two regions.

- 28. Give any two measures of skewness.
- 29. Three unbiased dice are thrown. What is the probability that the sum of the number thrown is 10?
- 30. State and prove addition theorem of probability.
- 31. When will you say that three events are mutually independent. Give an example to show that pairwise independence need not imply mutual independence.

(4×6=24 Marks)

SECTION - D

Answer any two questions. Each carries fifteen marks.

- 32. Discuss the merits and demerits of mean, median and mode.
- 33. Compute quartile deviation from the following data:

Income 0 - 50 50 - 100 100 - 150 150 - 200 200 - 300 300 - 400 No. of families 250 220 150 120 150 100

- 34. If A_1 , A_2 , A_3 are mutually exclusive and exhaustive events show that $B_1 = A_1$, $B_2 = A_1^c A_2$ and $B_3 = A_1^c A_2^c A_3$ are mutually exclusive and exhaustive.
- 35. a) State and prove Bayes' theorem.
 - b) Urn I contain 5 white, 9 black and 7 red balls, urn II contains 7 white 8 black and 10 red balls and urn III contains 2 white, 6 black and 9 red balls. An urn is chosen at random and a ball is drawn from it and it is found that the colour of this ball is red. What is the probability that the selected ball is from urn II?

 (15×2=30 Marks)