Reg. No. :

Fifth Semester B.Sc. Degree Examination, December 2018 (First Degree Programme under CBCSS) CHEMISTRY

Core Course - V

CH 1541 : Physical Chemistry – I (2013 Admission Onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - A

Answer all questions. Each question carries 1 mark.

- Define mean free path.
- 2. Arrange most probable velocity, average velocity and RMS velocity in the increasing order of magnitude.
- The total number of Bravais lattices is ______
- 4. A plane cuts the a, b and c axes at 2a, 3b and c. Find the Miller indices of the plane.
- 5. Solutions having same osmotic pressure are called _____
- 6. One mole of an ideal gas at 0°C (volume 22.4 l) undergoes expansion against a constant pressure of 1 atm. The final volume is 224 l. The work done is _____ l atm.
- 7. During Joule-Thomson expansion, _____ remains constant.
- 9. BF₃ belongs to _____ point group.
- 10. The two planes in water molecule are _____ (vertical, horizontal, one vertical and one horizontal) (10×1=10 Marks)

P.T.O.

SECTION - B

Answer any eight questions. Each question carries 2 marks.

- 11. Write Maxwell's distribution of molecular velocity. Represent it graphically. What is the effect of temperature on the distribution? Explain.
- 12. Calculate most probable velocity for O₂ at 0°C.
- 13. What are the Bravais lattices under cubic system ? Find the number of atoms per unit cell in each of them.
- 14. KCl belongs to fcc. But XRD pattern of KCl resembles simple cubic. Why?
- 15. 54.18 g of glucose (M = 180 g) is dissolved in water and made up to 1000 ml. Find the osmotic pressure of the solution T = 298 K.
- 16. Define inversion temperature. Explain its significance.
- 17. What is the effect of temperature on the viscosity of liquids? Explain.
- 18. State and explain Hess's law.
- 19. Free energy functions are better criteria than entropy in predicting spontaneity. Why?
- 20. What is the effect of
 - a) P
 - b) T on Gibb's free energy? Explain.
- 21. Explain with example improper rotation axis.
- 22. Define liquid crystals. How are they classified?

(8×2=16 Marks)

SECTION - C

Answer any six questions. Each question carries 4 marks.

- 23. Calculate the number of collisions per m^3 per sec. for O_2 at 0°C and 1 bar pressure. Diameter of O_2 is 0.36 nm.
- 24. Define critical constants. Show that $T_c = \frac{8a}{27Rb}$ (a, b Vander Waals constants).

- 25. The diffraction patterns of a cubic system are shown in sinθ values of 0.1461, 0.1690, 0.2801, 0.2935 and 0.3697. Find the lattice type. Justify your answer.
- 26. Derive Poiseuille's equation. Discuss.
- 27. Show that $\overline{C}_{\rho} \overline{C}_{\nu} = R$ for ideal gas.
- 28. Derive Kirchhoff's equation.
- 29. Derive Gibb's Helmholtz equation.
- 30. Define partial molal volume. How is it determined? Discuss with the help of one example.
- 31. Discuss Swarm theory of liquid crystals.

(6×4=24 Marks)

SECTION - D

Answer any two questions. Each question carries 15 marks.

- 32. a) Define fugacity. How is it determined? Discuss.
 - b) Derive Gibbs-Duhem equation.
- 33. a) Define Vant Hoff's factor. How is it determined in cryoscopy?
 - b) Derive equations for Δu , ΔH , ΔS , ΔA and ΔG for adiabatic expansion.
- 34. Write a brief account of
 - a) rotating crystal method
 - b) powder method in crystallography.
- 35. Discuss briefly
 - a) Virial equation of state
 - b) Non-stoichiometric defect
 - c) Joule Thomson effect.

(2×15=30 Marks)