Reg.	No	. :	•••	•••	•••	•••	•••	•••	•••	•••	••••	••••
Name												

Second Semester B.Sc. Degree Examination, December 2021 First Degree Programme Under CBCSS Mathematics

Complementary Course for Chemistry/Polymer Chemistry

MM 1231.2: MATHEMATICS - II

INTEGRATION, DIFFERENTIAL EQUATIONS AND ANALYTIC GEOMETRY (2014-2017 Admissions)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All the first ten questions are compulsory. They carry 1 mark each.

- 1. Evaluate $\int (\cos x + \sin x) dx$.
- 2. Define average -value of a continuous-function f on an interval [a,b].
- 3. Define are length of a smooth curve y = f(x) on the interval [a, b].
- 4. Evaluate $\int_{10}^{23} (1+8xy) dx dy$.
- 5. Find the order of the differential equation $(y''')^2 + (y'')^9 + 2y = 6$.
- 6. Give the general form of a separable equation.

- 7. Write down the auxiliary equation of the differential equation y'' 10y' + 5y = 0.
- 8. Define the conic hyperbola.
- 9. State reflection property of parabola.
- 10. State Kepler's first law.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions from among the questions 11 to 22. These questions carry 2 marks each.

- 11. Find the position function of a particle moves with velocity $v(t) = \cos \pi t$ along a coordinate line, assuming that the particle has coordinate s = 4 at time t = 0.
- 12. Find the area of the region bounded above by y = x + 6, bounded below by $y = x^2$, and bounded on the sides by the lines x = 0 and x = 2.
- 13. Use a double integral to find the volume of the solid that is bounded above by the plane z = 4 x y and below by the rectangle $R = [0,1] \times [0,2]$.
- 14. Use a polar double integral to find the area enclosed by the three-petaled rose $r = \sin 3\theta$.
- 15. Solve $x(1+y^2)dx + y(1+x^2)dy = 0$.
- 16. Solve $y' + 3y = e^{-2x}$.
- 17. Show that the differential equation $(1+4xy+2y^2)dx+(1+4xy+2x^2)dy=0$ is exact.
- 18. Find a general solution of y'' + 9y' + 20y = 0.
- 19. Sketch the graph of the parabola $x^2 = 12y$.

- 20. Find the foci of the ellipse $\frac{x^2}{9} + \frac{y^2}{16} = 1$.
- 21. Find the equation of the hyperbola with vertices $(0, \pm 8)$ and asymptotes $y = \pm \frac{4}{3}x$.
- 22. Find an equation for the parabola that has its vertex at (1,2) and its focus (4,2). (8 \times 2 = 16 Marks)

SECTION - III

Answer any six questions. from among the questions 23 to 31. These questions carry 4 marks each.

- 23. Suppose that a curve y = f(x) in the xy-plane has the property that at each point (x,y) on the curve, the tangent line has x^2 . Find an equation for the curve given that it passes through the point (2,1).
- 24. Suppose that a particle moves on a coordinate line so that its velocity at time t is $v(t) = (t^2 2t)m/s$. Find the distance travelled by the particle during the time interval $0 \le t \le 3$.
- 25. Derive the formula for the volume of a sphere of radius τ .
- 26. Evaluate $\iint_R xy \, dA$ over the region R enclosed between $y = \frac{1}{2}x$, $y = \sqrt{x}$, x = 2, and x = 4.
- 27. Evaluate $\int_{0}^{2} \int_{y/2}^{1} e^{x^2} dx dy$.
- 28. Solve $\cos(x + y)dx + (3y^2 + 2y + \cos(x + y))dy = 0$.
- 29. Solve the differential equation y'' + 4y' + 4y = 0.
- 30. Solve the differential equation $y'' + 3y' + 2y = 12x^3$.
- 31. Sketch the graph of $r = \frac{2}{1-\cos}$ in polar coordinates.

 $(6 \times 4 = 24 \text{ Marks})$

M - 2362

SECTION - IV

Answer any two questions from among the questions 32 to 35. These questions carry 15 marks each.

- 32. (a) Find the area of the region enclosed by $x = y^2$ and y = x 2.
 - (b) Use a double integral to find the area of the region R enclosed between the parabola $y = \frac{1}{2}x^2$ and the line y = 2x.
- 33. (a) Find the arc length of the curve $y = x^{3/2}$ from (1,1) to (2,2 $\sqrt{2}$).
 - (b) Find the area of the surface that is generated by revolving the portion of the curve y = between x = 1 and x = 2 about they axis.
- 34. Solve the following differential equations
 - (a) $y'' + 5y' + 4y = 10e^{-3x}$
 - (b) $4'' + 4' + 4y = e^{-x} \cos x$.
- 35. Sketch the graphs of the hyperbolas
 - (a) $\frac{x^2}{4} \frac{y^2}{9} = 1$
 - (b) $y^2 x^2 = 1$.

 $(2 \times 15 = 30 \text{ Marks})$