

Reg. No. :

Name :

Second Semester B.Sc. Degree Examination, August 2018
First Degree Programme Under CBCSS
Complementary Course for Chemistry/Polymer Chemistry
MM – 1231.2 : MATHEMATICS – II
Integration, Differential Equations and Analytic Geometry
(2013 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All the first ten questions are compulsory. They carry 1 mark each.

- Evaluate ∫ sec x (tan x + cos x) dx.
- 2. What is the surface area of the surface of revolution that is generated by revolving the portion of the curve x = f(y) between y = c and y = d about the y-axis?
- 3. Let $\int_{1}^{4} f(x) dx = 2$ and $\int_{1}^{4} g(x) dx = 10$. Find $\int_{1}^{4} [3f(x) g(x)] dx$.
- 4. Find the integrating factor of $\frac{dx}{dy} + \frac{3x}{y} = \frac{1}{y^2}$.
- 5. Solve $(D^2 6D + 9)y = 0$.
- 6. Solve $(x+1)\frac{dy}{dx} = 2e^{-y}$.
- 7. Write an equation for the parabola with vertex at (1, 1) and directrix at y = -2.

22. Show that for an ellipse with accommonty

- 8. Find the equations to the asymptotes of the hyperbola $\frac{y^2}{9} \frac{x^2}{25} = 1$.
- 9. Find the directrix of the parabola $x^2 = -9y$.
- 10. Write the parametric representation of the ellipse $\frac{x^2}{16} + \frac{y^2}{49} = 1$.

SECTION - II

Answer any 8 questions from among the questions 11 to 22. These questions carry 2 marks each.

- 11. Find F'(0) where $F(x) = \int_0^x \frac{\cos t}{t^2 + 3} dt$.
- 12. Find the area of the region enclosed by the parabola $y = 2x x^2$ and the x-axis.
- 13. Find the arc length of the curve $x = \cos t + t \sin t$, $y = \sin t t \cos t$, $0 \le t \le \pi$.
- 14. Write an equivalent integral of $\int_{0.4x}^{1.4} e^{-y^2} dy dx$ with the order of integration reversed.
- 15. Solve $\frac{dy}{dx} = e^{x-y} + x^2 e^{-y}$.
- 16. Find the differential equation of the orthogonal trajectories of the system of parabolas $y = ax^2$, a being the parameter.
- 17. Find the particular integral of $(D^2 + 5D + 6)y = e^x$.
- 18. Solve $(x+1)\frac{dy}{dx} y = e^{3x}(x+1)^2$.
- 19. Find the vertices and ends of the minor axis of the ellipse $9(x-1)^2 + 16(y-3)^2 = 144$.
- 20. Using discriminant, identify the conic represented by the equation $x^2 xy + y^2 2 = 0$.
- 21. Find a polar equation for an ellipse that has its focus at the pole whose eccentricity is $\frac{2}{3}$ and directrix x = 1.
- 22. Show that for an ellipse with eccentricity e, $\frac{r_1}{r_0} = \frac{1+e}{1-e}$.

SECTION - III

Answer any 6 questions from among the questions 23 to 31. These questions carry 4 marks each.

- 23. A ball is hit directly upward with an initial velocity of 49 m/s and is struck at a point that is 1 m above the ground. Assuming that the free-fall model applies, how high will the ball travel?
- 24. Find the volume of the solid that results when the region enclosed by the curves $x = y^2$, x = y + 2 is revolved about the y-axis.

- 25. Use cylindrical coordinates to evaluate $\int\limits_0^a \int\limits_0^{\sqrt{a^2-x^2}} \int\limits_0^{a^2-x^2-y^2} x^2 dz \ dy \ dx, \ (a>0) \ .$
- 26. Solve $x^2 \frac{d^2y}{dx^2} 2x \frac{dy}{dx} + 2y = 0$.
- 27. Solve $(6xy + 2y^2 5)dx + (3x^2 + 4xy 6)dy = 0$.
- Find the orthogonal trajectories of the family of ellipses having center at the origin, a focus at the point (c, 0) and semimajor axis of length 2c.
- 29. Rotate the coordinate axes through an angle θ to remove the xy term from the equation $x^2 + 4xy 2y^2 6 = 0$. Identify the new curve.
- 30. Find the equations of the tangents to the ellipse $9x^2 + 16y^2 = 144$ from the point (2, 3).
- 31. Find a polar equation of a hyperbola with a focus at the pole, eccentricity $\sqrt{2}$ and one of its vertices at (2, 0).

Answer any 2 questions from among the questions 32 to 35. These questions carry 15 marks each.

- 32. a) Find the volume of the solid bounded by the surface $z = \sqrt{y}$ and the planes x + y = 1, x = 0 and z = 0.
 - b) Find the area of the surface generated by revolving the curve $y = \sqrt{4 x^2}$, $-1 \le x \le 1$ about the x-axis.
- 33. a) Solve $(x^2 3y^2)dx + 2xy dy = 0$.
 - b) Find the particular integral of $(D^2 + 9)y = x \sin x$.
- 34. Solve $\frac{d^2y}{dx^2} 4\frac{dy}{dx} + 4y = 8(e^{2x} + \sin 2x + x^2)$.
- 35. a) Sketch the graph of $r = \frac{12}{4 + \cos \theta}$ in polar coordinates.
 - b) Find the equations to the asymptotes of the hyperbola $8x^2 + 10xy 3y^2 2x + 4y = 2$.