(Pages : 4)

Reg.	No.	:	•••	• •	• •	•••	•	•••		• •				*	•	•	•	•	•	•
Name	:				_			_		202		200	3-2		W2					

Second Semester B.Sc. Degree Examination, May 2019

First Degree Programme under CBCSS

Complementary Course

MM 1231.2 : MATHEMATICS — II – CALCULUS WITH APPLICATIONS IN CHEMISTRY - III [FOR CHEMISTRY AND POLYMER CHEMISTRY)

(2018 Admission)

Time: 3 Hours

Max. Marks: 80

Section -

All 10 questions are compulsory, each carries 1 mark each.

- 1. Find f_{xx} and f_{yy} of the function $f(x,y) = x^2y^2$.
- 2. If $w = e^x$ and $x = t^3$ then to find $\frac{dw}{dt}$.
- 3. Sum the series 1 to 100 inclusively.
- 4. Find $\sum_{n=0}^{n=9} ar^n$.
- Define alternating series.
- 6. Define irrotational vector field.
- 7. If $F = e^{xyz}(\hat{i} + \hat{j} + \hat{k})$ then find div F.
- 8. Define the gradient vector field of a scalar field φ .

- 9. Evaluate $\iint_{0.0}^{2x} 2xy \, dx \, dy$.
- 10. If $x = r \cos t$ and $y = r \sin t$ then find $\frac{\partial(x,y)}{\partial(r,t)}$.

Section - II

Answer any eight questions, each carries 2 mark each.

- 11. Show that $xy^2dx + y^2xdy$ is exact differential.
- 12. If $f(x,y) = (x+y)^2$ then find $x f_x + y f_y$.
- 13. Given that x(u) = 1 + au and $y(u) = bu^3$, where a and b are constants. Find rate of change of $f(x,y) = xe^{-y}$ with respect u.
- 14. State D'Alembert's ratio test on convergence of a series.
- 15. Using Integral test verify whether the series $\sum_{n=1}^{\infty} \frac{1}{\left(n-\frac{3}{2}\right)^2}$ convergent or not.
- 16. Show that the series $\sum_{n=1}^{\infty} \frac{1}{(n)^n}$ is convergent.
- 17. Find the Laplacian of $\varphi = x^3y^2z$.
- 18. If $\varphi = xyz$ then show that $\nabla \times \nabla_{\varphi} = 0$.
- 19. Find the length of the curve traced by the vector function. If $\vec{r}(t) = 2t\hat{i} + (3t)\hat{j} + (1-t)\hat{k}$ from t = 0 to t = 2.
- 20. Evaluate $\int_{0}^{a} \int_{y=0}^{\sqrt{a^2-x^2}} xy \, dy \, dx$.

- 21. Evaluate $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{x+y} \frac{z}{(x+y)^2} dz dy dx$.
- 22. State Pappu's second theorem.

Section - III

Answer any six questions, each carries 4 mark each.

- 23. Find Taylor's theorem to find a quadratic approximation of $f(x,y) = \sin x \sin y$ about the origin.
- 24. The temperature of a point (x,y) on a unit circle is given by T(x,y) = 1 + xy. Find the temperature of the two hottest point on the circle.
- 25. Determine the range of x for which the power series $P(x) = 1 + 2x + 4x^2 + 8x^3 + ...$ converge.
- 26. Using Maclaurin series find a power series expansion for $f(x) = \log(1+x)2$.
- 27. The position vector of a particle at time t is given by $\vec{r}(t) = 2t^2\hat{i} + (3t-2)\hat{j} + (3t^2-1)\hat{k}$. Find (a) Unit tangent vector \hat{t} at t=1 (b) Speed at t=1 (c) acceleration \vec{a} at t=1.
- 28. Find curl and divergence of $F = x^2y^2\hat{i} + y^2z^2\hat{j} + x^2z^2\hat{k}$ at (1, 1, 1)
- 29. For the function $\varphi = x^2y + yz$ at the point (1, 2, -1). Find its rate of change with distance in the direction $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$. At this same point what is the greatest possible rate of change with distance and which direction does it occurs.
- 30. Find the volume of the region bounded by the paraboloid $z = x^2 + y^2$ and the plane z = 2y.
- 31. A tetrahedron is bounded by three coordinate surface and the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ and has density $\rho(x, y, z) = 1 + \frac{x}{a}$. Find the average density.

Section - IV

Answer any two questions, each carries 15 marks each.

- 32. (a) Find the greatest and smallest value of f(x,y) = xy which takes the values on ellipse $x^2 + 4y^2 = 8$.
 - (b) Find the point closest to the origin on the line of intersection of the planes y + 2z = 12 and x + y = 6.
- 33. Determine the convergence of the following series

(a)
$$\sum_{n=1}^{\infty} \frac{1}{\left(n-\frac{3}{2}\right)^2}$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n!+1}$$

(c)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$$

- 34. (a) Find and expression for a volume element in spherical polar coordinates and hence calculate the moment of inertia about the diameter of a uniform sphere of radius 'a'.
 - (b) Evaluate the double integral $I = \iint_R \left(a + \sqrt{x^2 + y^2} \right) dx \, dy$ where R is the region bounded by the circle $x^2 + y^2 = a^2$.
- 35. (a) Find the expression for the equation of the tangent plane and normal line to the surface $\varphi(x,y,z)=c$ at the point P with coordinates (x_0,y_0,z_0) . Hence find the equation of tangent plane and normal line to the surface of the sphere $x^2+y^2+z^2=a^2$ at (0,a,0)
 - (b) Show that $\nabla \cdot (\nabla \phi \times \nabla \varphi) = 0$ where ϕ and φ are scalar fields.