(Pages : 4)

Reg. N	10.	:	 		21.01			
Name	10201					•••	••••	 •••
	•							
Name	• ••	•••	 	 •••				

Sixth Semester B.Sc. Degree Examination, April 2024

First Degree Programme under CBCSS

Mathematics

Core Course X

MM 1642 : COMPLEX ANALYSIS - II

(2021 Admission)

Time: 3 Hours

Max. Marks : 80

SECTION - I

Answer all questions.

- 1. State Morera's theorem.
- 2. State generalized Cauchy's integral formula.
- 3. Evaluate $\int_{|z|=4} \frac{1}{z-2} dz$.
- Define uniform convergence in sequence.
- 5. Find $\sum_{j=0}^{\infty} \left(\frac{1}{3}\right)^j$.

6. Using the ratio test, show that $\sum_{j=0}^{\infty} \frac{j^2}{4^j}$ converges

7. Find the Maclaurin's series for sinz.

- 8. Find the singularities of $f(z) = \frac{\cos z}{z^2 (z-\pi)^3}$.
- 9. Define pole. Give an example.
- 10. Find the poles of $f(z) = \frac{z^2}{z^2 + 4}$.

(10 × 1 = 10 Marks)

Answer any eight questions.

11. Compute $\int_{|z|=1} \frac{e^{5z}}{z^3} dz$.

12. Show that
$$\int_{|z|=3} \frac{e^{z}}{z-2} dz = 2\pi i e^{2}$$

13. Find
$$\int_{C} \frac{dz}{z-1}$$
 where C is the circle $|z| = 3$.

14. Show that
$$1 + c + c^2 + \dots = \frac{1}{1 - c}$$
, if $|c| < 1$.

15. If $\sum_{j=0}^{\infty} c_j$ sums to *S* and λ is any complex number then show that $\sum_{j=0}^{\infty} \lambda c_j$ sums to λS .

16. Prove that $\lim_{n\to\infty} (n!)^n = \infty$.

- 17. Expand $e^{\frac{1}{z}}$ in a Laurent series around z = 0.
- 18. Find the residue of f(z) tanz at $z = \frac{\pi}{2}$.
- 19. Find the residue at z = 0 of $f(z) = \frac{5z-2}{z(z-1)}$.
- 20. Determine the order of each pole and the value of residue there for $f(z) = \frac{1 e^{2z}}{z^4}$.
- 21. Prove that $\lim_{n \to \infty} (n!)^{\frac{1}{n}} = \infty$.
- 22. Find the Maclaurin series expansion of sinhz.

(8 × 2 = 16 Marks)

SECTION - III

Answer any six questions.

23. Find $\int_{C} \frac{e^z + \sin z}{z} dz$ where C is the circle |z-2| = 3.

24. If f is analytic in a domain D, show that all its derivatives f', f''..... exist and are analytic in D.

25. Evaluate
$$\int_{|z|=3} \frac{z^2+5}{(z-2)^2} dz$$
.

26. State and prove ratio test.

27. Find the first five terms of the Maclaurin's series for tanz.

- 28. If R is the radius of convergence of $\sum a_n z^n$ then what is the redii of convergence of $\sum a_n^2 z_n$ and $\sum a_n z^{2n}$.
- 29. Compute the residue at singularity of $f(z) = \frac{\cos z}{z^2(z-\pi)^3}$.
- Find PV $\int_{-\infty}^{\infty} \frac{x \sin x}{(1+x^2)} dx$. 30.

Evaluate $\int_{|z-1|=1} \frac{2z^2+z}{z^2+1} dz$ using Cauchy Residue theorem. 31.

(6 × 4 = 24 Marks)

SECTION - IV

Answer any two questions.

- State and prove Cauchy's integral formula. 32.
- State Picard's theorem and verify it for $e^{\frac{1}{z}}$ near z = 0. (a) 33.
 - Explain zeroes and different types of singularities with examples. (b)
- State and prove Cauchy Residue theorem. (a) 34.
 - Using Cauchy Residue theorem, evaluate $\oint_{|z|=2} \frac{1-2z}{z(z-1)(z-3)} dz$. (b)

35. Evaluate $\int_{0}^{\pi} \frac{d\theta}{2 - \cos\theta}.$

 $(2 \times 15 = 30 \text{ Marks})$