VTM NSS COLLEGE, DHANUVACHAPURAM

DEPARTMENT OF MATHEMATICS

QUESTION BANK : SEMESTER 3 (MATHS FOR PHYSICS)

LINEAR ALGEBRA, SPECIAL FUNCTIONS AND CALCULUS

-

2 MARKS

	Show that if A is a square matrix (i)A+A' is Symmetric	
	a. A-A' is Skew Symmetric	
	Find the sum and product of eigen values of the matrix $\begin{bmatrix} 2\\1\\0 \end{bmatrix}$	$ \begin{bmatrix} 0 & 0 \\ 2 & 0 \\ 0 & 3 \end{bmatrix} $
	If A and B are matrices such that $A+B=\begin{bmatrix} 1 & -1 \\ 3 & 0 \end{bmatrix}$ and A-B	$= \begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix}$. Find A and B.
	Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$	
	State Cayley-Hamilton theorem and find the characteristic	equation of $\begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix}$.
	Find the eigen value of the matrix $\begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$.	
	Show that for any square matrix A, A and A' have the same	eigen values.
	If $A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$, show that $A^2 - 4A - 5I = 0$.	
	Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$	1 41
JIM	Find the sum and product of eigen values of the matrix $\begin{bmatrix} 3\\0\\0\end{bmatrix}$	2 6 0 5
	Find the rank of the matrix $\begin{bmatrix} 2 & 4 & 6 \\ 4 & 8 & 12 \end{bmatrix}$. $\begin{vmatrix} 1 & -5 & 2 \end{vmatrix}$	
	Evaluate the determinant $\begin{vmatrix} 14 & 8 & 12 \\ 1 & -5 & 2 \\ 7 & 3 & 4 \\ 2 & 1 & 5 \end{vmatrix}$ Find the rank of the matix $\begin{vmatrix} 2 & -3 & 5 & 3 \\ 4 & -1 & 1 & 1 \\ 3 & -2 & 3 & 4 \end{vmatrix}$.	
	Find the rank of the matix $\begin{bmatrix} 2 & -3 & 5 & 5 \\ 4 & -1 & 1 & 1 \\ 3 & -2 & 3 & 4 \end{bmatrix}$.	
	If A and B are matrices such that $A+B=\begin{bmatrix}3 & 0\end{bmatrix}$ and $A-B=\begin{bmatrix}1\\1\end{bmatrix}$	
	Show that x=a Cosnt is a solution of the differential equation	on $\frac{a^2x}{dt^2}$ +n ² x=0
	Solve y'=-y/x,given y(1)=1	
	$Solve \frac{dy}{dx} = e^{3x-2y} + x^2 e^{-2y}$	

- 18. Write the order and degree of the differential equation $\left(\frac{dy}{dx}\right)^3 + 2y = \left(\frac{d^2y}{dx^2}\right)^2$
- 19. Find an integrating factor of the differential equation $(x+1)\frac{dy}{dx} y = e^{3x}(x+1)^2$
- 20. Check whether the differential equation $(y \cos x + 1)dx + \sin x dy = 0$ is exact
- 21. Solve $\frac{d^4y}{dx^4} + 13\frac{d^2y}{dx^2} + 36y = 0$
- 22. Write the general form of Cauchy's homogeneous linear equation
- 23. Find the Wronskian of e^x and e^{-x}
- 24. Solve $\frac{dy}{dx} = e^{3x-2y} + x^2 e^{-2y}$
- 25. Transform the differential equation $x^2 \frac{d^2 y}{dx^2} + 3x \frac{dy}{dx} + y = \frac{1}{(1-x)^2}$ into linear equation with constant coefficients
- 26. Find the divergence of $\nabla = xyz I + 3x^2y j + (xz^2-y^2z)k$ at the point (2,-1,1)
- 27. Evaluate $\int_{C} (1 + xy^2) ds$ where c : r(t) = ti+2tj, $0 \le t \le 1$
- 28. Find $\iint_{\sigma} (x^2 + y^2 + z^2)$ ds , where σ is the sphere of radius 2 centred at the origin
- 29. Using divergence theorem , find the outward flux of the vector field F(x,y,z) = zk across the sphere $x^2+y^2 + z^2 = a^2$
- 30. Use divergence theorem to find the outward flux of the vector field $F(x,y,z)=2xi+3yj+z^2k$
- 31. State stokes theorem
- 32. Verify that $y = e^{-3x}$ is a solution of y''+y'-6y = 0
- 33. Find the integrating factor of y'-y = e^{2x}
- 34. Verify whether the equation $xydx+(2x^2+3y^2-20)dy=0$ is exact or not.
- 35. Using Green's theorem evaluate $\int 4xydx + 2xydy$ where C is the rectangle bounded by x=-2,x=4,y=1,y=2.
- 36. Solve y''-5y'+6y = 0
- 37. State the recurrence relation for gamma function
- 38. Prove that the force field $F=ie^{y}+j xe^{y}$ is conservative in the entire xy-plane
- 39. State Guass's law for inverse square field
- 40. What is the outward flux of the vector field F = xi+yj+zk , across any unit cube.

4 MARKS

- 41. Find the eigen values and eigen vectors of the matrices $\begin{bmatrix} 4 & 3 \\ 2 & 9 \end{bmatrix}$, $\begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$ 42. Find the eigen values and eigen vectors of the matrices (i) $\begin{bmatrix} 4 & 3 \\ 2 & 9 \end{bmatrix}$; $\begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$
- 43. Find the inverse of the matrix $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$.
- 44. Find x,y,z and w given that $3 \begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} x & 5 \\ -1 & 2w \end{bmatrix} + \begin{bmatrix} 6 & x+y \\ z+w & 5 \end{bmatrix}$.

45. Show that the matrix $\begin{bmatrix} 1/3 & -2/3 & 2/3 \\ 2/3 & -1/3 & -2/3 \\ 2/3 & -2/3 & 1/3 \end{bmatrix}$ is orthogonal. 46. Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$. 47. Verify Cayley- Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ and find its inverse. 48. Evaluate the determinant D= $\begin{vmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{vmatrix}$ 49. Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 1 & -2 \\ -5 & 4 \end{bmatrix}$. 50. Find the characteristic equation of the matrix $A = \begin{bmatrix} 1 & -1 & 1 \\ 4 & 1 & 0 \\ 8 & 1 & 1 \end{bmatrix}$. Hence find A^{-1} . 51. If $A = \begin{bmatrix} cos\alpha & sin\alpha \\ -sin\alpha & cos\alpha \end{bmatrix}$, find A^2 and hence find A^n . 52. Using Cramer's rule solve the set of equations: 2x + 3y = 3x - 2y = 553. Write and row reduce the augmented matrix for the equations: x - y + 4z = 52x - 3y + 8z = 4

54. Using Cayley Hamilton theorem evaluate A⁻¹, given A= $\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$

x - 2v + 4z = 9.

- 55. Find the number of solutions of the following system of equations 2x+6y+11=0, 6x+20y-6z+3=0, 6y-18z+1=0.
- 56. Find the divergence and curl of the vector field $F(x,y,z) = x^2yi+2y^3zj+3zk$

- 57. Evaluate the surface integral $\iint_{\sigma} x^2 dS$ over the sphere $x^2+y^2+z^2 = 1$
- 58. Evaluate the surface integral $\iint_{\sigma} y^2 z^2 dS$ where σ is the part of the cone z = $\sqrt{x^2 + y^2}$ that lies between the planes z =1 and z = 2
- 59. Evaluate the line integral I = $\oint_C x dy$, where C is the circle in the xy plane defined by $x^2+y^2 =$ a^{2} , z= 0
- 60. Use a line integral to find the area enclosed by the ellipse $x^2/a^2 + y^2/b^2 = 1$
- 61. Evaluate $\int_{C} (3x^2 + y^2) dx + 2xy dy$ along the circular arc C given by x = cost, y = sint (0 \le 1) $t \leq \pi/2$
- 62. Find the workdone by the force F = xi + 2yj , when it moves a particle on the curve $2y = x^2$ from (0,0) to (1,1)
- 63. Use divergence theorem to evaluate $\iint F \cdot n \, ds$ where $F = (x^2 yz)i + (y^2 xz)j + (z^2 yz)k$ taken over the region bounded by x = 0, x = a, y = 0, y = b, z = 0, z = c
- 64. Use green's theorem to evaluate $\int x^2 y dx + x dy$ where C is the triangle with vertices (0,0), (1,0) and (1,2)
- 65. Show that $\Gamma(\frac{1}{2}) = \sqrt{\pi}$
- 66. Solve $x \frac{dy}{dx} + y = xy^3$ 67. Show that $\beta(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$
- 68. Show that $\beta(m,n) = \beta(n,m)$
- 69. Verify Green's theorem for $\int (xy + y^2) dx + x^2 dy$ where C is closed, the curve consisting of the line y=x and the parabola $y=x^2$
- 70. Prove curl $(\overline{\varphi F}) = \varphi curl(\overline{F}) + \nabla \varphi \times \overline{F}$
- 71. Find the work done by the conservative field $\overline{F}(x,y) = e^{y}i + xe^{y}j$ on a particle that move from (1,0) to (-1,0) along a semicircular path.
- 72. Apply Green's theorem to evaluate $\int_c (2x^2 y^2) dx + (x^2 + y^2) dy$ where C is the boundary of the area enclosed by the x-axis and the upper half of the circle $x^2+y^2=a^2$
- **73.** Solve $1+yx\frac{dx}{dy}+x^2 = 0$ using variable separable method.
- 74. Find the general and singular solutions of y = px+a/p
- 75. Solve $1 + yx \frac{dx}{dy} + x^2 = 0$
- 76. Solve $(y''+2y'+3)^2 = 0$
- 77. Find the orthogonal trajectories of the family of co-axial circles $x^2+y^2+2\lambda x + c = 0$ where λ is the parameter
- 78. Solve $y = 2px-p^3$
- 79. Using the method of variation of parameters solve $\frac{d^2y}{dx^2} + 4y = \tan 2x$
- 80. Solve $[x \tan(\frac{y}{x}) y \sec^2(\frac{y}{x})] dx x \sec^2(\frac{y}{x}) dy = 0$

15 MARKS

- 81. Verify Stoke's theorem for the vector field F(x,y,z)=2zi+3xj+5yk, taking the surface σ to be the portion of the paraboloid Z= 4 - x^2-y^2 for which z≥0 upward orientation and C to be the positively oriented circle $x^2+y^2 = 4$ that forms the boundary of σ in the xy plane.
- 82. (a) Find the area of the surface extending upward from the circle $x^2+y^2 = 1$ in the xy-plane to the parabolic cylinder $z = 1-x^2$

(b) Suppose that a semicircular wire has the equation $y=\sqrt{25-x^2}$ and that the mass density is $\delta(x, y) = 15$ -y. The density of the wire decreases linearly with respect to y to a value of 10 units at the top(y=5). Find the mass of the wire.

83. (a) Evaluate the surface integral $\iint_{\sigma} xz \, dS$ where σ is the part of the plane x+y+z = 1 that lies in the first octant

(b)Suppose that a curved lamina σ with constant density $\delta(x, y, z) = \delta_0$ is the portion of the paraboloid $z = x^2+y^2$ below the plane z = 1. Find the mass of the lamina

84. (a) Evaluate $\iint F \cdot n \, ds$ where F =4xi-2y²j+z²k taken over the cylindrical region bounded by $x^2+y^2 = 4$, z = 0, z = 3

(b) Verify green's theorem for $f(x,y) = y^2 - 7y$, g(x,y) = 2xy + 2x and C is the circle $x^2 + y^2 = 1$

85. Find the matrix P which transforms the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ to the diagonal form. Hence calculate A⁴.

86. (a) Find for what values of a and b, the equations

$$x + y + z = 6$$

$$x + 2y + 3z = 10$$

$$+ 2y + az = b$$
 have

(i) No solution

(ii) a unique solution

- (iii) more than one solution
- (b) Find the values of k for which the equations
- 3x + y kz = 0
- 4x 2y 3z = 0

2kx + 4y + kz = 0 may possess non-trivial solution.

87. Diagonalize the symmetric matrix
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$
.
88. Reduce the matxix $A = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$ to normal form and hence find the

89. Find the eigen values and eigen vectors of the matrix $M = \begin{bmatrix} 1 & -4 & 2 \\ -4 & 1 & -2 \\ 2 & -2 & -2 \end{bmatrix}.$

90. Investigate the value of λ and μ so that the equations 2x + 3y + 5y = 9, 7x + 3y - 2z = 8, $2x + 3y + \lambda z = \mu$ have

rank.

(a) No solution (b) a unique solution (c) an infinite number of solutions.

91. (a) Find the value of a and b for which the equations

$$x + ay + z = 3$$
$$x + 2y + 2z = b$$
$$x + 5y + 3z = 9$$

Is (i) consistent and have unique solution

(ii) is inconsistent

(iii) is consistent and have infinitely many solutions

(b) Find the value of k for which

$$(3k - 8)x + 3y + 3z = 0$$

$$3x + (3k - 8) + 3z = 0$$

$$3x + 3y + (3k - 8) = 0$$

have a non-trivial solution.

92. (a) Solve $x\frac{dy}{dx} + y = x^4y^4$ (b) Solve $\frac{dy}{dx} = \frac{x+2y-3}{2x+y-3}$ 93. Solve $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = e^{-x}$

93. Solve
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = e^{-y}$$

- 94. Show that the equation $(2xy+y \tan y)dx + (x^2 x \tan^2 y + \sec^2 y + 2) dy = 0$ is exact and hence solve it.
- 95. Solve $(1-x^2)\frac{d^2y}{dx^2} 3x\frac{dy}{dx} y = 1$

96. (a)Find the orthogonal trajectory of the cardiods $r = a(1-\cos\theta)$

(b)Solve $(D-2)^2 y = 8(e^{2x} + sin^2 x + x^2)$

97. (a)Solve (3y+2x+4)dx - (4x+6y+5)dy = 0

(b) Solve $(xy^3+y)dx + 2(x^2y^2+x+y^4)dy = 0$

- 98. Use the variation of parameters method to solve $\frac{d^2y}{dx^2}$ + y = cosec x subject to the boundary conditions $y(0) = y(\pi/2) = 0$
- 99. Solve by the method of undetermined coefficients $\frac{d^2y}{dx^2} y = e^{3x}cos^2x e^{2x}sin^3x$

100. (a) Solve
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = e^x$$

(b) Solve $(y-x)\frac{dy}{dx} + 2x + 3y = 0$