V T M N S S COLLEGE DHANUVACHAPURAM

First Semester B.Sc. Degree Mathematics Question Bank Complementary Course for Physics

MM 1131.1: Calculus and Sequence and Series

2 Mark

- 1. Evaluate $\lim_{x\to\infty} (\sqrt{x^6+6}-x^3)$
- 2. Show that the function f defined by $f(x) = \sqrt{4 x^2}$ is continuous on the closed interval (-2,2).
- 3. Find the derivative of $f(x) = \frac{2x^2 + x}{x^3 1}$.
- 4. Find the derivative of $f(x) = In\sqrt{x^2 + 1}$.
- 5. Compute $\frac{ds}{dt}$ if $s = (1+t)\sqrt{t}$.
- 6. Estimate $\frac{dy}{dx}$ if $y = \cos(x^3)$.
- 7. Find $\frac{d}{dx}[\ln(x^2+1]]$.
- 8. Find the average rate of change of $y = x^2 + 1$ with respect to x over the interval [3,5].
- 9. Find $\frac{dy}{dx}$ if $y = \sin^{-1}(x^3)$.
- 10. Use implicit differentiation to find $\frac{d^2y}{dx^2}$ if $4x^2 2y^2 = 9$.
- 11. Obtain the value of $\lim_{n \to \pi/2} \frac{1-\sin x}{\cos x}$.
- 12. Evaluate $\lim_{x\to 0^+} x \ln x$
- 13. Evaluate $\int \frac{3x^2}{x^3+5} dx$.
- 14. Evaluate $\int_{0}^{2} x(x^{2}+1)^{3} dx$
- 15. Evaluate $\int \frac{\cos x}{\sin^2 x} dx$.

- 16. Evaluate $\int \frac{dx}{1+3x^2}$.
- 17. Evaluate $\int \cos^2 x dx$.
- 18. Evaluate $\int xe^x dx$
- 19. Find the area under the curve $f(x) = x^3$ over the interval [2,3].
- 20. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $z = x^4 \sin(xy^3)$.
- 21. Define level surface for a function f(x,y,z). Describe the level surfaces of $f(x,y,z) = x^2 + y^2 +$ z^2 .
- 22. Describe the level surfaces of $f(x, y, z) = z^2 x^2 y^2$. 23. If $f(x, y) = x^2y^3 x^4y$, find $\frac{\partial^2 f}{\partial x^2}$.
- 23. If $f(x, y) = x^2 y^3 x^4 y$, find $\frac{\partial^2 f}{\partial y^2}$.
- 24. Find the local linear approximation to $f(x, y) = \sqrt{x^2 + y^2}$ at (3,4).
- 25. Express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w = x + 2y + z^2$, x = r/s, $y = r^2 + lns$, z = 2r.
- 26. State the chain rules for derivatives.
- 27. Let $f(x) = \sqrt{1 x^2 y^2 z^2}$. Find $f\left(0, \frac{1}{2}, \frac{1}{2}\right)$.
- 28. Consider the sphere $x^2 + y^2 + z^2 = 1$. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the point $\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$.
- 29. Let $f(x, y) = x \sin(xy)$. Then find fx(x, y).
- 30. Given that $z = e^{xy}$, x=2u+v, y=u/v, compute $\frac{\partial z}{\partial y}$ and $\frac{\partial z}{\partial y}$.
- 31. State the ratio test.
- 32. Determine whether the sequence $\left\{\frac{n}{2n+1}\right\}_{n=1}^{\infty}$ converges or diverges by examining the limit as $n \to \infty$.
- 33. Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.
- 34. Use the alternating series test to check the convergence of $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k}$.

- 35. Using the root test cheke the convergence of the series $\sum_{k=2}^{\infty} \left(\frac{4k-5}{2k+1}\right)^k$.
- 36. Find the Maclaurin series for e^x .
- 37. Define the Taylor series for f about x=x0.
- 38. Find all values of x for which the series $\sum_{k=0}^{\infty} x^k$ converges and find the sum of the series for those values of x.
- 39. Determine whether the sequence $\left\{ (-1)^{n+1} \frac{n}{2n+1} \right\}_{n=1}^{+\infty}$ or diverges
- 40. Evaluate $\sum_{k=0}^{\infty} \frac{5}{4^k}$.

- 1. Find $\lim_{x\to 1} \frac{x-1}{\sqrt{x}-1}$.
- 2. Find $\lim_{x \to -\infty} \frac{4x^2 x}{2x^3 5}$.
- 3. Find $\lim_{x \to +\infty} \frac{\sqrt{x^2+2}}{3x-6}$.
- 4. Compute $\lim_{x \to 5} \frac{x^2 3x 10}{x^2 10x + 25}$.
- 5. Evaluate $\lim_{x \to 1} \frac{x^2 + x 2}{x^2 x}$.
- 6. Estimate i) $\lim_{x \to +\infty} \frac{x}{e^x}$ ii) $\lim_{x \to 0+} \frac{\ln x}{\csc x}$.
- 7. Find $\lim_{x\to 0} (1 + \sin x)^{1/x}$.
- 8. Show that |x| is continuous every where.
- 9. Find $\frac{dy}{dx}$ if $y = \frac{\sin x}{1 + \cos x}$.
- 10. Find the equation of the tangent line to the curve $y = \frac{2}{x}$ at the point (2, 1) on the curve.
- 11. Find dy/dx if y = sin(1 + cosx).
- 12. Evaluate $\frac{d}{dx} \left[\sin \sqrt{1 + \cos x} \right]$.
- 13. Find the derivative of $y = \frac{x^2\sqrt{7x-14}}{(1+x^2)^4}$.
- 14. Evaluate $\int (x^2 + x) dx$

- 15. Evaluate $\int xe^x dx$.
- 16. Evaluate $\int \left(\frac{1}{x^2} + sec^2\pi x\right) dx$.
- 17. Evaluate $\int_{2}^{5} (2x-5)(x-3)^{9} dx$.
- 18. Find

a)
$$\int_0^1 f(3x+1) dx$$
 if $\int_1^4 f(x) dx = 5$

b)
$$\int_{2}^{0} x f(x^{2}) dx$$
 if $\int_{0}^{4} f(x) dx = 1$

- 19. Evaluate $\int \sin^4 x \cos^5 x dx$.
- 20. Let $f(x, y) = y^2 e^x + y$. Find f_{xyy} .
- 21. Find the second order partial derivatives of f(x,y) = x2y3 + x4y.
- 22. Suppose $w = \sqrt{x^2 + y^2 + z^2} \ x = \cos\theta$, $y = \sin\theta$, $z = \tan\theta$. Find $dw/d\theta$ when $\theta = \pi/4$.
- 23. Use chain rule to find $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$, where $w = e^{xyz}$, x = 3u + v, y = 3u v, $z = u^2v$.
- 24. Use appropriate forms of the chain rule to find $\frac{\partial w}{\partial \rho}$ and $\frac{\partial w}{\partial \theta}$ where $w = x^2 + y^2 + z^2, x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$ and $z = \rho \cos \phi$.
- 25. Locate all relative extrema and saddle points of $f(x,y) = 4xy x^4 y^4$.
- 26. Find the second order partial derivatives of f(x,y) = x2y3 + x4y.
- 27. Suppose that w = x2 + y2 + z2, $x = \cos\theta$, $y = \sin\theta$, $z = \tan\theta$. Use the chain rule to find $dw/d\theta$ when $\theta = \pi$.
- 28. Locate all relative extrema and saddle points of $f(x, y) = 3x^2 2xy + y^2 8y$.
- 29. Let L(x,y) denote the local linear approximation to $\sqrt{x^2 + y^2}$ at the point (3,4). Compare the error in approximating $f(3.04,3.98) = \sqrt{(3.04)^2 + (3.98)^2}$ by L(3.04,3.98) with the distance between the points (3,4) and (3.04,3.98).
- 30. Show that the integral test applies and use the integral to determine whether the series $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converge or diverge.
- 31. Use the comparison test to determine whether the series $\sum_{k=1}^{\infty} \frac{1}{2k^2+k}$ converge or diverge.
- 32. Find the sum of the series $\sum_{k=1}^{\infty} \left(\frac{3}{4^k} \frac{2}{5^{k-1}} \right)$.
- 33. Test for the convergence of $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{k+3}{k(k+1)}$.
- 34. Find the interval of convergence and radius of convergence of $\sum_{k=1}^{\infty} \frac{(x-5)^k}{k^2}$.

- 35. Use an nth Maclaurin polynomial for e^x to approximate e to five-decimal place accuracy.
- 36. Find the first four Taylor polynomials for $\ln x$ about x=2.

37. Find
$$\lim_{x \to +\infty} \sqrt{x^6 + 5 - x^3}$$
.

38. Find the domain of the function

$$f(x) = \frac{1 \cdot 3 \cdot 5 \cdots (2k-1)}{(2k-2)!} x^k$$

39. Check for the convergence of the series

$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{k+3}{k(k+1)}$$

- 40. Test the convergence of the following series
 - i) $\sum_{k=1}^{\infty} \frac{k^k}{k!}$
- ii) $\sum_{k=1}^{\infty} \frac{1}{2^{k}-1}$

15 Mark

- 1. (a) Prove that $\lim_{x \to 3} x^2 = 9$.
 - (b) Prove that $\lim_{x\to 81} \sqrt{x} = 9$
- 2. (a) Find $\frac{dy}{dx}$ if $y = 3x^8 2x^5 + 6x + 1$.
 - (b) At what points, does the graph of $y = x^3 3x + 4$ have a horizondal tangent line?
 - (c) Find the area of the triangle formed from ther coordinate axes and the tangent line to the curve $y = 5x^{-1} \frac{1}{5}x$ at the point (5,0).
- 3. (a) Use implicit differentiation to find $\frac{d^2y}{dx^2}$ if $4x^2 2y^2 = 9$.
 - (b) Find the slopes of the tangent lines to the curve $y^2 x + 1 = 0$ at the points (2,-1) and (2,1).
 - (c) Find Find $f''\left(\frac{\pi}{4}\right)$ if f(x) = cosecx.
- 4. Find

$$\int \frac{3x^4 + 4x^3 + 16x^2 + 20x + 9}{(x+2)(x^2+3)^2} dx.$$

- 5. Evaluate $\int \frac{x^2 + x 2}{3x^3 x^2 + 3x 1} dx$.
- 6. (a) Evaluate $\int \sin^4 x \cos^4 x \, dx$.
 - (b) Evaluate $\int tan^2 x sec^4 x dx$.

7. (a) Let
$$f(x) = \begin{cases} -\frac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$
. Show that $f_x(x, y)$ and $f_y(x, y)$ exist at all points (x, y) .

- (b) Show that the function $u(x,t)=\sin(x-ct)$ is a solution of one dimentional wave equation.
- 8. a) Find the absolute maximum and minimum values of f(x,y) = 3xy-6x-3y+7.
 - (b)At what points on the circle $x^2 + y^2 = 1$ does f(x,y) = xy have an absolute maximum and what is that maximum?
- 9. (a) Find the nth Maclaurin polynomial for $\frac{1}{1-x}$ and express it in sigma notation.
 - (b) Find the nth Taylor polynomial for $\frac{1}{x}$ about x = 1 and express it in sigma notation.
- 10. Find the interval of convergence and radius of convergence of the following series

i)
$$\sum_{k=1}^{\infty} \frac{(x-5)^k}{k^2}$$
 ii) $\sum_{k=1}^{\infty} \frac{(x)^k}{k!}$

- 11. (a) Evaluate $\int_{1}^{\sqrt{2}} \frac{dx}{x^2 \sqrt{4-x^2}}$.
- (b) Find the slope of the circle $x^2 + y^2 = 25$ at the point (3,-4).
- 12. Use implicite differentiation to find $\frac{dy}{dx}$ if $y^2 = x^2 + sinxy$.
- (b) Find the tangent to the curve $x^3 + y^3 9xy = 0$ at the point (2,4).
- 13. (a) Find the interval of convergence and radius of convergence of $\sum_{k=1}^{\infty} \frac{(x-5)^k}{k^2}$.
- (b) Find the values of x for which the power series $\sum_{k=1}^{\infty} k! x^k$ converge.
- (c) Find the values of x for which the power series $\sum_{k=1}^{\infty} \frac{(-1)^{k-1} \chi^{2k-1}}{2k-1}$ converge.
- 14. (a) Find $f''\left(\frac{\pi}{4}\right)$ if f(x) = secx.
 - (b) On a sunny day, a 50ft flagpole casts shadow that changes with the angle of elevation of the sun. Let s be the length of the shadow and θ the angle of elevation of the sun. Find the rate at which the length of the shadow is changing with respect to θ when $\theta = 45^{\circ}$. Express your answer in units of feet/degree.
- (c) Compute $\frac{d}{dx} \left[ln \left(\frac{x^2 \sin x}{\sqrt{1+x}} \right) \right]$.
- 15. (a) Find the slope of the sphere $x^2 + y^2 + z^2 = 1$ in the y-direction at the points $\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$ and $\left(\frac{2}{3}, \frac{1}{3}, \frac{-2}{3}\right)$.
- (b) Describe the level surfaces of $f(x, y, z) = x^2 + y^2 + z^2$.
- 16. Use Lagrange multipliers to determine the dimentions of a rectangular box, open at the top, having a volume of $32 \, ft^3$ and requiring the least amount of material for its construction.

17. (a) Use the comparison test to determine whether the following series converge or diverge

$$i) \quad \sum_{k=1}^{\infty} \frac{1}{\sqrt{k} - \frac{1}{2}}$$

ii)
$$\sum_{k=1}^{\infty} \frac{1}{2k^2 + k}$$

(b) Prove that the series $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$ converges. Find the sum.

18. Find the interval of convergence of the series

a)
$$\sum_{k=0}^{\infty} \frac{(-1)^k x^k}{3^k (k+1)}$$
.

b)
$$\sum_{k=0}^{\infty} \frac{(-1)^k (x-4)^k}{(k+1)^2}$$
.

c)
$$\sum_{k=1}^{\infty} \frac{x^k}{k(k+1)}$$

19. Find the Maclaurin series for

(a)
$$e^x$$

(b)
$$\sin x$$

(c)
$$\cos x$$

$$(d)\frac{1}{1-x}$$

20. a) Evaluate $\frac{d}{dx}sec^{-1}(5x^4)$.

b) Find $\frac{\partial z}{\partial x}$ if the equation yz - lnz = x + y defines z as a function of two independent variables x and y.