(Pages : 3)

Reg. No. :

First Semester M.A. Degree Examination, May 2023

Economics

EC 214 : QUANTITATIVE METHODS FOR ECONOMICS

(2018 Admission Onwards)

Time : 3 Hours

Max. Marks: 75

PART - A

Define the following in one or two sentences

- 1. Scalar matrix
- 2. Properties of a Determinant
- 3. Constrained Optimization
- 4. Degree of freedom
- 5. Statistic and Parameter
- 6. Adjoint of a Matrix
- 7. Linear programming.
- 8. Find $\frac{dy}{dx}$ of the following functions
 - (a) $y = 5x^4$
 - (b) $y = 4x^{-5}$

P.T.O.

R - 6131

- 9. Eigen values
- 10. Order of the equation

 $(10 \times 1 = 10 \text{ Marks})$

PART – B

Answer any seven questions. Each question carries 5 marks.

- 11. Explain the importance of Matrix algebra in Economics and briefly explain different types of Matrices.
- 12. Write a short note on Rank of a Matrix and find the rank of the following matrix

[1	2	-1]
1	4	3
-1	-2	6

13. Discuss the concept of Leontief Open input-output model.

14. Write the dual of the following primal LP problem.,

Maximize $Z = 3X_1 + X_2 + 2X_3 - X_4$ subject to the constraints

(a)
$$2X_1 - X_2 + 3X_3 + X_4 = 1$$

(b) $X_1 + X_2 - X_3 + X_4 = 3$

and $X_1, X_2 \ge 0$ and X_3, X_4 unrestricted in sign.

15. Solve the following system of linear equations 4x + 3y = 4; 3x + 4y = 10

16. Given
$$y = f(x_1, x_2) = 2x_1^2 + x_1x_2 + 3x_2^2$$
 find out $\frac{dy}{dx_1}$ and $\frac{dy}{dx_2}$.

 17. Fit a normal curve to the following data

 Class
 60–62
 63–65
 66-68
 69–71
 72–74

 Frequency
 5
 18
 42
 27
 8

R-6131

- 18. The average life of 26 electric bulbs were found to be 1200 hours with a standard deviation of 150 hours. Test whether these bulbs could be considered as a random sample from a normal population with mean 1300 hours.
- 1
 5
 2

 19. Find the value of
 3
 1
 2

 6
 2
 5

20. Find the first, second, and cross partial derivatives for $z = 2x^3 - 11x^2y + 3y^2$.

 $(7 \times 5 = 35 \text{ Marks})$

PART – C

Answer any three questions. Each carries 10 marks.

- 21. Briefly explain the components and characteristics of Linear programming. What are the important steps involved in linear programming?
- 22. Briefly explain various methods of Sampling.
- 23. Find the inverse of the matrix $A = \begin{bmatrix} 1 & 3 & 0 \\ -2 & 3 & 3 \\ 1 & 1 & 4 \end{bmatrix}$
- 24. Maximise $y = x_1 x_2 + 2x_1$ subject to $x_1 + 2x_2 = 20$. Solve the equations with Lagrange multiplier method.
- 25. Given a system of Linear equation

-2X + Y + 3Z = 24X + 2Y - Z = 35X - 4Z = 4

Solve the equation using matrix approach.

 $(3 \times 10 = 30 \text{ Marks})$

R – 6131