(Pages : 4)

Reg. No. :

Name :

First Semester B.Sc. Degree Examination, March 2023

First Degree Programme under CBCSS

Mathematics

Core Course

MM 1141 : METHODS OF MATHEMATICS

(2018 Admission Onwards)

Time : 3 Hours

Max. Marks: 80

P - 7696

SECTION - I

All questions are compulsory. Each question carries 1 mark.

- 1. What is the local linear approximation of $f(x) = \sqrt{x}$ at $x_0 = 1$.
- 2. Define point of inflection.
- 3. Define critical point.
- 4. State Extreme value theorem.
- 5. For a particle in rectilinear motion, the acceleration and position functions a(t) and s(t) are related by the equation _____
- 6. Let A(x) be the area under the graph of a nonnegative continuous function f over an interval [a, x], then A'(x) = _____.
- 7. Integrals over infinite intervals are known as _____

P.T.O.

8. $\cosh x + \sinh x = ----$

9. Define the work done by a force F.

10. The total mass of a homogeneous lamina of area A and density δ is —————

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions. Each question carries 2 marks.

- 11. Evaluate $\lim_{x \to 0^+} \left(\frac{1}{x} \frac{1}{\sin x} \right).$
- 12. Find the subintervals of $[0, 2\pi]$ in which the function $f(x) = x + 2\sin x$ is decreasing.
- 13. Find all critical points of $f(x) = x^3 3x + 1$.
- 14. What are the geometrical implications of the multiplicity of a root of a polynomial?
- 15. Find the horizontal and vertical asymptotes of the curve given by $y = \frac{\ln x}{y}$.
- 16. Find the absolute extrema of $f(x) = 6x^{4/3} 3x^{1/3}$ on the interval [-1, 1].
- 17. Suppose that a particle moves on a coordinate line so that its velocity at time *t* is $v(t) = t^2 2t m/s$. Find the distance traveled by the particle during the time interval $0 \le t \le 3$.
- 18. Find the average value of the function $f(x) = \sqrt{x}$ over the interval [1, 4].
- 19. Define hyperbolic sine and draw its graph.
- 20. Define improper integral. Is $\int_{0}^{3} \frac{dx}{x^2 3x + 2}$ an improper integral? Explain.

P – 7696

21. Use Pappus Theorem to find the volume V of the torus generated by revolving a circular region of radius *b* about a line at a distance a (greater than *b*) from the rater of the circle.

22. Evaluate $\int_{0}^{\infty} e^{-x} dx$.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer any six questions. Each question carries 4 marks.

- 23. Evaluate $\lim_{x\to 0} (\cos x)^{1/x^2}$.
- 24. Find all the inflection points of $f(x) = xe^{-x}$.
- 25. Find the radius and height of the right circular cylinder of largest volume that can be inscribed in a right circular cone with, radius 6 inches and height 10 inches.
- 26. State and prove Rolle's theorem.
- 27. Find the volume of the solid generated when the region between the graphs of the equations $f(x) = \frac{1}{2} + x^2$ and g(x) = x over the interval [0, 2] is revolved about the x-axis.
- 28. Using the notion of surface of revolution, show that the area of the surface of a sphere of radius r is $4\pi r^2$.
- 29. Find the length of the arc of the curve $y^2 = x^3 3$ from the origin to the point (1, 1).
- 30. A spring exerts a force of 5 N when stretched 1 m beyond its natural length.
 - (a) Find the spring constant k.
 - (b) How much work is required to stretch the spring 1.8 m beyond its natural length?
- 31. Evaluate $\int_{0}^{\infty} (1-x)e^{-x}dx$.

 $(6 \times 4 = 24 \text{ Marks})$

P - 7696

SECTION - IV

Answer any two questions. Each question carries 15 marks.

- Find the radius and height of the right circular cylinder of largest volume that 32. (a) can be inscribed in a right circular cone with radius 6 inches and height 5 10 inches.
 - (b) Using Roll's theorem show that between any two real root of $e^{-x} = \sin x$, there is at least one real root of $e^{-x} = -\cos x$. 5

(c) Find the points of inflection of the cubic $y = \frac{a^2 x}{v^2 + a^2}$.

- Explain the 7 steps in sketching the graph of a rational function. 6 (a) 33.
 - (b) Sketch the graph of $y = \frac{x^2 1}{x^3}$.
- (a) Find the length of the curve $y = \log \sec x$ between the points given by x = 034. 5 and $x = \pi/3$.
 - (b) Find the volume when the loop of the curve $y^2 = x(2x-1)^2$ revolves about 5 the x-axis.
 - Find the area of the surface that is generated by revolving the portion of the (c) curve $y = x^2$ between x = 1 and x = 2 about the y-axis. 5
- A space probe of mass $m = 5.00 \times 104$ kg travels in deep space subjected 35. **(a)** only to the force its own engine. Starting at a time when the speed of the probe is $v = 1.10 \times 104$ m/s. the engine is fired continuously over a distance of 2.50 \times 106 m with a constant force of 400 \times 105 N in the direction of 6 motion. What is the final speed of the probe?

(b) Evaluate
$$\int_{1}^{4} \frac{dx}{(x-2)^{2/3}}$$
.

5

5

9

- (c) Find the mass and center of gravity of the lamina bounded by the x-axis, the line x = 1, and the curve $y = \sqrt{x}$. Given $\delta = 2$. 4

 $(2 \times 15 = 30 \text{ Marks})$

P-7696

4