P - 7725

(Pages : 4)

Reg. No. :

First Semester B.Sc. Degree Examination, March 2023 First Degree Programme under CBCSS

Mathematics

Complementary Course I for Chemistry and Polymer Chemistry

MM 1131.2 : MATHEMATICS I - DIFFERENTIAL CALCULUS AND SEQUENCES AND SERIES

(2021 Admission onwards)

Time: 3 Hours Max. Marks: 80

SECTION - A

All the first 10 questions are compulsory. They carry 1 mark each.

- 1. Find $\lim_{x\to 2} (x^2 x + 1)$.
- 2. State product rule for differentiation.
- 3. Evaluate $\log_2 5$ in terms of natural logarithms.
- 4. Find the domain of the function $f(x,y) = \frac{ln(x+y+1)}{y-x}$.
- 5. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ if $f(x,y) = x^2y + 5y^3$.
- 6. Define an inflection point of a function.

- 7. Using L'Hôpital's rule, find $\lim_{x\to 0} \frac{\sin 2x}{x}$
- 8. State the Extreme-Value Theorem.
- 9. Evaluate $\sum_{n=0}^{\infty} \frac{(-1)^n 5}{4^n}$.
- 10. Show that the sequence $\left\{ (-1)^{n+1} \frac{1}{n} \right\}$ converges by finding the limit.

$$(10 \times 1 = 10 \text{ Marks})$$
SECTION – B

02011011

Answer any eight questions. These question carries 2 marks each.

- 11. Show that the function f defined by $f(x) = \sqrt{4 x^2}$ is continuous on the closed interval (-2,2).
- 12. Find the derivative of $f(x) = \frac{2x^2 + x}{x^3 1}$
- 13. Find the derivative of $f(x) = \ln \sqrt{x^2 + 1}$.
- 14. State Rolle's Theorem and verify it for the function $f(x) = x^3 x$ for $x \in [-1,1]$.
- 15. Find all critical points of $f(x) = x^3 3x + 1$.
- 16. Evaluate $\lim_{x\to 0^+} x \ln x$.
- 17. Define level surface for a function f(x,y,z). Describe the level surfaces of $f(x,y,z) = x^2 + y^2 + z^2$.
- 18. Find the local linear approximation to $f(x,y) = \sqrt{x^2 + y^2}$ at (3,4).

- 19. Express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w = x + 2y + z^2$, $x = \frac{r}{s}$, $y = r^2 + \ln s, z = 2r$.
- 20. Find the Maclaurin series for e^x.
- 21. Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.
- 22. Use the alternating series test to check the convergence of $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k}$...

$$(8 \times 2 = 16 \text{ Marks})$$

SECTION - C

Answer any six questions. These questions carries 4 marks.

- 23. Evaluate $\lim_{x \to 1} \frac{x^2 + x 2}{x^2 x}$.
- 24. Evaluate $\frac{d}{dx} \sec^{-1}(5x^4)$.
- 25. Find the intervals on which the function $f(x) = x^{\frac{4}{3}} 4x^{\frac{1}{3}}$ is increasing and decreasing.
- 26. Find $\lim_{x\to 0} (1+\sin x)^{\frac{1}{x}}$. Let $y=(1+\sin x)^{\frac{1}{x}}$.
- 27. Use chain rule to find $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$, where $w = e^{xyz}$, x = 3u + v, y = 3u v, $z = u^2v$.
- 28. Find the slope of the sphere $x^2 + y^2 + z^2 = 1$ in the *y*-direction at the points $\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$ and $\left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right)$.

- 29. Find the first four Taylor polynomials for $\ln x$ about x = 2.
- 30. Test the convergence of the following series
 - (a) $\sum_{k=1}^{\infty} \frac{k^k}{k!}$
 - (b) $\sum_{k=1}^{\infty} \frac{1}{2^k 1}$
- 31. Show that |x| is continuous everywhere.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Answer any two questions. These question carries 15 marks

- 32. (a) Sketch a graph of $y = \frac{x^2 1}{x^3}$ and identify the locations of all asymptotes, intercepts, relative extrema, and inflection points.
 - (b) Find the slope of circle $x^2 + y^2 = 25$ at the point (3, -4).
- 33. (a) Use implicit differentiation to find $\frac{dy}{dx}$ if $y^2 = x^2 + \sin xy$.
 - (b) Find the tangent to the curve $x^3 + y^3 9xy = 0$ at the point (2,4).
- 34. (a) Find the local extreme values of the function $f(x,y) = xy x^2 y^2 2x 2y + 4$.
 - (b) At what point or points on the circle $x^2 + y^2 = 1$ does f(x,y) = xy have an absolute maximum, and what is that maximum?
- 35. (a) Find the interval of convergence and radius of convergence of $\sum_{k=1}^{\infty} \frac{(x-5)^k}{k^2}.$ (6)
 - (b) Find the values of x for which the power series $\sum_{k=1}^{\infty} k! \, x^k$ converge. (3)
 - (c) Find the values of x for which the power series $\sum_{k=1}^{\infty} \frac{(-1)^{k-1} x^{2k-1}}{2k-1}$ converge.

 $(2 \times 15 = 30 \text{ Marks})$