N - 3967

(Pages	:	4)	
--------	---	----	--

Reg.	No.	:	•••	•••	••••	••••	••••	
Name	:							

First Semester B.Sc. Degree Examination, June 2022 First Degree Programme under CBCSS

Core Course

Mathematics

MM 1141: METHODS OF MATHEMATICS (2018 & 2019 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - I

Answer all question compulsory. Each question carries 1 mark.

- 1. Find an equation for the local linear approximation to $y=5-x^2$ at $x_0=2$.
- 3. State the extreme value Theorem.
- 4. The function f(x) = |x| 1 has how many horizontal tangent to the graph of f over (-1,1).
- 5. If f is differentiable and $f'(x) \neq 0$ an (a, b), then the equation f(x) = 0.
- 6. Find the velocity and speed of the function $s(t) = t^3 6t^2$.

- A cylindrical shell is enclosed by two concentric right circular cylinders. The volume of that cylindrical shell is ————
- 8. The lateral area of the frustum with slant height $\sqrt{10}$ and base radii $r_1 = 1$ and $r_2 = 2$ is ————
- 9. The volume of the torus generated by revolving a circular region of radius b about a line at a distance a from the centre of the circle is
- 10. Find the volume of the solid that is obtained when the region under the curve $y = \sqrt{x}$ over the interval [1,4] is revolved about the x- axis.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions. Each question carries 2 marks.

- 11. Express the derivative with respect to x of $y = x^2$ in differential form at x 1.
- 12. Evaluate $\lim_{x \to \frac{\pi}{2}} \frac{1 \sin x}{\cos x}$ using L' Hospital's rule.
- 13. Find the inflection points, if any, of $f(x) = x^4$.
- 14. Find all critical points of $f(x) = 3x^{\frac{5}{3}} 15x^{\frac{2}{3}}$.
- 15. Find $\frac{dy}{dx}$ for $y = \frac{x^2 1}{x^3}$.
- 16. Find the absolute extrema of $f(x)=6x^{\frac{4}{3}}-3x^{\frac{1}{3}}$ in the interval [-1, 1].
- 17. Find the volume of the solid that is obtained when the region under the curve $y = \sqrt{x}$ over the interval [1, 4] is resolved about the x-axis.

- 18. A spring exerts a force of 5 N when stretched 1 *m* beyond its natural length. Find the spring constant *k*.
- 19. Find the fluid pressure and force on the top of a flat circular plate of radius 2 m that is submerged horizontally in water at a depth of 6 m.
- 20. Prove that $\cosh^2 x \sinh^2 x = 1$.
- 21. Find the value of $\int_{-2}^{3} ((x+6)-x^2) dx$.
- 22. Define Hooke's law.

 $8 \times 2 = 16 \text{ Marks}$

SECTION - III

Answer any six questions. Each question carries 4 marks.

- 23. The diameter of a polyurethane sphere is measured with percentage error within $\pm 0.4\%$. Extimate the percentage error in the calculated volume of the sphere.
- 24. Find $\lim_{x\to 0} (1+\sin x)^{\frac{1}{x}}$.
- 25. Find the relative extrema of $f(x)=3x^5-5x^3$.
- 26. Explain the steps for solving Applied Maximum and Minimum Problems.
- 27. Find the absolute extrema, if any, of the function $f(x)=e^{(x^3-3x^2)}$ on the interval $(0, +\infty)$.
- 28. Derive the formula for the volume of a right pyramid whose altitude is h and whose base is a square with sides of length a.
- 29. A space probe of mass m = 5.00×10^4 kg travels in deep space subjected only to the force of its own engine. Starting at a time when the speed of the probe is $v = 1.10 \times 10^4$ m/s, thee engine is fired continuously over a distance of 2.50×10^6 m with a constant force of 4.00×10^5 N in the direction of motion. What is the final speed of the probe.

- 30. Explain Fluid Pressure.
- 31. A liquid form of antibiotic manufactured by a pharmaceutical firm is sold in bulk at a price of \$200 per unit. If the total production cost for x units is $C(x)=500,000+80x+0.003x^2$.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer any two questions. Each question carries 15 marks.

- 32. Find a point on the curve $y = x^2$ that is closest to the point (18,0).
- 33. Find the area of the region enclosed by $x = y^2$ and y = x 2.
- 34. Suppose that the position function of a particle moving on a coordinate line is given by $s(t)=2t^3-21t^2+60t+3$.
- 35. Explain the surface area problem.

 $(2 \times 15 = 30 \text{ Marks})$