Reg. No. :
Name :

Fifth Semester B.Sc. Degree Examination, December 2018 First Degree Programme under CBCSS PHYSICS

Core Course V

PY 1541 – Methodology in Physics and Relativistic Mechanics (2014 Admission Onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - A

Answer all questions in one or two sentences. Each question carries one mark:

- 1. What is the role of experimentation in scientific method?
- 2. Define generalized momentum.
- 3. Give the Hamiltonian for a two dimensional harmonic oscillator.
- 4. Write down Hamilton's equations of motion.
- 5. What is meant an inertial frame?
- 6. State the postulates of special theory of relativity.
- 7. What is meant by rest energy?
- 8. Explain what is meant by length contraction.
- 9. Write down the relativistic energy momentum relation.
- 10. What are tachyons?

(10×1=10 Marks)

P.T.O.

SECTION - B

Answer **Eight** questions **not** exceeding a paragraph. **Each** question carries **two** marks:

- 11. What is quantitative approach of research?
- 12. What are the three groups in to which different methods of research can be put?
- Give the different criteria to be satisfied by a good scientific research.
- 14. What are the two types of experiments?
- 15. What are cyclic coordinates? Prove that the momentum conjugate to a cyclic coordinate is a constant of motion.
- 16. Give the conditions under which the hamiltonian function becomes the total energy of a system.
- 17. Write down the Galilean transformation equations.
- 18. Discuss the importance of the Michelson-Morley experiment.
- 19. Using energy-momentum relation, prove that a particle of zero rest mass always travel with the speed of light in vacuum.
- 20. Explain twin paradox.
- 21. Define the components of velocity four-vector.
- 22. Discuss how the time dilation of special relativity was tested experimentally.

(8×2=16 Marks)

SECTION - C

Answer any six questions. Each question carries four marks:

- 23. Discuss the general objectives of research.
- 24. Describe the different steps of scientific research.
- 25. Explain the concept of replication in the design of experiments.

- 26. In an experiment to determine the spring constant, the following values are obtained for the spring constant (in Newton/metre): 86, 85, 84, 89, 85, 89, 87, 85, 82, 85.
 - i) Find the mean value of spring constant.
 - ii) Standard deviation of the values.
- 27. Prove that Hamiltonian function is a constant of motion if the Lagrangian is not an explicit function of time.
- 28. Write down the Hamiltonian for a one dimensional harmonic oscillator and obtain the equations of motion.
- 29. What is Coriolis force? How does it affect motion of objects on earth?
- 30. Calculate the apparent wavelength of a spectral line of wavelength 5000A° in the light coming from a distant star which moves away from the earth at a recessional velocity of 3 × 10⁷ m/s.
- 31. Calculate the velocity of nuclear particles whose mean life time is 4.17×10^{-8} s.

 Proper life time is 2.5×10^{-8} s.

 (6×4=24 Marks)

SECTION - D

Answer any two questions. Each question carries fifteen marks :

- 32. Discuss statistical testing of a hypothesis explaining null hypothesis, significance level in the statistics based acceptance or rejection of a hypothesis.
- Describe the importance of estimating errors. Discuss random errors and systematic errors and their sources.
- Outline the general format of a science journal paper with proper description of each component.
- 35. Using the conservation of momentum, arrive at the relativistic expression for variation of mass with velocity. (2×15=30 Marks)