(Pages: 4)

Reg.	No.	:	٠.			 								*	٠.	
Name	· :		 				_	 	- 2	20		5 0.	100			

Fourth Semester B.Sc. Degree Examination, March 2020 First Degree Programme Under CBCSS

Complementary Course for Physics

MM 1431.1 MATHEMATICS IV (COMPLEX ANALYSIS, FOURIER SERIES AND FOURIER TRANSFORMS

(2014 - 2017 Admissions)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All the first ten questions are compulsory. They carry 1 mark each.

- 1. If $z_1 = 6 + 3i$, $z_2 = -2 + 3i$, what is the real part of $\frac{z_1}{z_2}$?
- 2. Using D'Moivre's Theorem, express $\cos 4\theta$ in terms of powers of $\cos \theta$ and $\sin \theta$.
- 3. Define analyticity of a complex function f(z) at a point $z = z_0$ in a domain D in the complex plane.
- 4. Define harmonic functions.
- 5. State Cauchy's Integral theorem.
- 6. Obtain the singular points of the function f(z) = Cot z.
- 7. Find the residue of $f(z) = \frac{1}{(z^2 + 1)^3}$ at z = i.

- 8. State Dirichlet conditions for the convergence of a Fourier series of a function f(x) of period 2π .
- 9. Write the standard form of Fourier Cosine series and formulae for Fourier coefficients of the half range Cosine series of a function f(x) in $(0, \pi)$.
- 10. If F(s) is the Fourier transform of f(x) then what is the Fourier transform of f(ax) where $a \neq 0$.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions from among the questions 11 to 22. These questions carry 2 marks each.

- 11. Find all distinct cube roots of i.
- 12. Show that an analytic function is constant if its modulus is constant.
- 13. Find an analytic function f(z) whose real part is $u(x, y) = x^2 y^2$.
- 14. Evaluate $\int_C \operatorname{Re} z dz$ where C is the shortest path form 1 + i to 3 + 2i.
- 15. Find the centre and radius of convergence of the power series $\sum_{n=1}^{\infty} (z + i\sqrt{2})^n$.
- 16. Determine the location and nature of singularities of $f(z) = \frac{2}{z^3} \frac{1}{z}$.
- 17. Find the residues of $f(z) = \frac{1}{(z^2 1)^2}$.
- 18. Expand $f(z) = \frac{1}{z^3 z^4}$ as a Laurent's series that converges for 0 < |z| < 1.
- 19. Evaluate $\int_{|z|=1}^{z} \frac{z}{(4z+i)^2} dz$.
- 20. Find the half range sine series of f(x) = x, $0 < x < \pi$.

- 21. Find the Fourier series of periodicity 2 for $f(x) = \begin{cases} 0, & -1 < x < 0 \\ 1, & 0 < x < 1 \end{cases}$
- 22. Prove that Fourier transform is a linear operator.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer any six questions from among the questions 23 to 31. These questions carry 4 marks each.

- 23. Prove that the function $f(z) = |z|^2$ is differentiable at the origin but not analytic at the origin.
- 24. What are the values of $\int_C \frac{z+1}{z^2(z-2)} dz$ around the circles C where C is
 - (a) |z| = 1 and
 - (b) |z-2-i|=2.
- 25. Expand $f(z) = \frac{1}{z(z^2 3z + 2)}$ in the region 0 < |z| < 1.
- 26. Obtain the residues of $f(z) = \frac{z^2 z + 2}{(z+3i)(z-3i)(z+i)(z-i)}$ at its poles.
- 27. State Cauchy's Residue Theorem. Use Cauchy's Residue Theorem to evaluate the integral of the function $f(z) = \frac{z^5}{1-z^3}$ around the circle |z| = 2, in the positive sense.
- 28. Show that $\int_{-\infty}^{\infty} \frac{\cos 3x}{(x^2 + 1)^2} dx = \frac{2\pi}{e^3}$.

29. Obtain the Fourier series of the periodic function defined by
$$f(x) = \begin{cases} -\pi & \text{if } -\pi < x < 0 \\ x & \text{if } 0 < x < \pi \end{cases}$$
 Deduce that
$$\frac{\pi^2}{8} + \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots \infty$$
.

30. Expand $f(x) = x - x^2$ as a Fourier series in -1 < x < 1.

31. Find the Fourier transform of
$$f(x) = \begin{cases} 1, |x| < 1 \\ 0, |x| > 1 \end{cases}$$
 Hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} dx$.

SECTION – IV

Answer any two questions from among the questions 32 to 35. These questions carry 15 marks each.

- 32. (a) Show that the function $u(x,y) = x^3 3xy^2 + 3x^2 3y^2 + 1$ is harmonic and find the corresponding analytic function f(z) in terms of z.
 - (b) If $f(z) = \sqrt{|xy|}$, check whether the Cauchy Riemann equations are satisfied at the origin. Is the function analytic at the origin? Justify your answer.
- 33. (a) Expand $\frac{1}{1-z^2}$ as a Taylor series about z = i.
 - (b) Evaluate $\int_C \frac{dz}{z^3(z+2)}$ where C is |z|=3.
- 34. Expand $f(x) = x^2$, $-\pi < x < \pi$ as a Fourier series of periodicity 2π . Hence deduce the following

(a)
$$\sum \frac{1}{n^2} = \frac{\pi^2}{6}$$

(b)
$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots \infty$$
 and

(c)
$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots \infty$$
.

35. Find the Fourier transform of $e^{-a|x|}$, a > 0, Deduce that $\int_{-\infty}^{\infty} \frac{\cos sx}{a^2 + s^2} ds = \frac{\pi}{2a} e^{-ax}, x > 0.$

 $(2 \times 15 = 30 \text{ Marks})$