Reg. No. : \qquad
Name : \qquad

Sixth Semester B.Sc. Degree Examination, March 2021
 First Degree Programme under CBCSS
 Mathematics
 Core Course XI
 MM 1643 : ABSTRACT ALGEBRA-RING THEORY
 (2018 Admission Regular)

Time : 3 Hours
Max. Marks : 80

SECTION - I

Answer all the first 10 questions. Each carries 1 mark.

1. Give an example of a non-commutative ring with unity.
2. Write a subring of \mathbf{Z}_{6}, the integers modulo 6 .
3. Define the term "Zero divisors".
4. Why \mathbf{Z}_{10}, the integers modulo 10 is not an integral domain.
5. Find the characteristic of the integral domain $\mathbf{Z}_{\mathbf{1 9}}$, the integers modulo 19.
6. List the elements in $2 \mathbb{Z} / 6 \mathbb{Z}$.
7. Show that the correspondence $x \mapsto 3 x$ from \mathbb{Z}_{4} to \mathbb{Z}_{12} does not preserve multiplication.
8. Give an example of an integral domain which is not a unique factorization domain.
9. True or False : "The ring of Gaussian integers a unique factorization domain".
10. In the ring of integers, find a positive integer a such that $\langle a\rangle=\langle 6\rangle+\langle 8\rangle$.
(10 $\times 1=10$ Marks)

SECTION - II

Answer any eight questions among the questions 11 to 26 : They carry 2 marks each.
11. Let $\phi: \mathbf{R}[x] \mapsto \mathbf{C}$ be a homomorphism with the property that $\phi(x)=\phi(i)$. Evaluate $\phi\left(x^{2}+1\right)$.
12. Show that the polynomial $2 x+1$ in $\mathbb{Z}_{4}[x]$ has a multiplicative inverse in $\mathbb{Z}_{4}[x]$.
13. Show that the polynomial $2 x^{2}+4$ is not reducible over \mathbb{Q} but reducible over \mathbb{Z}.
14. Suppose that R is an integral domain in which $20 * 1=0$ and $12 * 1=0$. What is the characteristic of R ?
15. Let D be a Euclidean domain with measure d. Show that if a and b are associates in D, then $d(a)=d(b)$.
16. Show that $\mathbb{Z}[\sqrt{-6}]$ is not a unique factorization domain.
17. If a and b belong to $\mathbb{Z}[\sqrt{d}]$, where d is not divisible by the square of a prime and $a b$ is a unit, power that a and b are units.
18. Give an example of ring elements a and b with the properties that $a b=0$ but $b a \neq 0$.
19. Prove that "Let a, b and c belong to an integral domain. If $a \neq 0$ and $a b=a c$, then $b=c$ ".
20. Prove that the only idempotents in an integral domain are 0 and 1.
21. Consider the equation $x^{2}-5 x+6=0$. Find all solutions of this equation in \mathbb{Z}_{8}.
22. Find a subring of $\mathbb{Z} \oplus \mathbb{Z}$ that is not an ideal of $\mathbb{Z} \oplus \mathbb{Z}$.
23. Draw the tattice diagram of ideals of \mathbb{Z}_{36}.
24. Give an example of a commutative ring that has a maximal ideal that is not a prime ideal.
25. Show that the mapping $a+i b$ to $a-i b$ is a ring isomorphism from the complex numbers onto the complex numbers.
26. Give an example of a ring with unity 1 that has a subring with unity 1^{\prime} such that $1^{\prime} \neq 1$.
($8 \times 2=16$ Marks)

SECTION - III

Answer any six questions among the questions 27 to 38 . They carry 4 marks each.
27. If R is a ring, then for any $a, b \in R$, show that $a(-b)=(-a) b=-(a b)$.
28. Show that "If p is a prime, then \mathbb{Z}_{p} is a field".
29. Let F be a field of order 2^{n}. Prove that characteristic of $F=2$.
30. Let p be a prime. Show that in the ring \mathbb{Z}_{p} you have $(a+b)^{p}=a^{p}+b^{p}$. for every $a, b \in \mathbb{Z}_{p}$.
31. Let R be a ring and let $/$ be an ideal of R. Prove that the factor ring $R / /$ is commutative if and only if $r s-s r \in I$ for all r and s in R.
32. Find all ring homomorphisms from \mathbb{Z}_{12} to \mathbb{Z}_{30}.
33. Show that "If D is an integral domain, then $D[x]$ is an integral domain".
34. Find the quotient and remainder upon dividing $f(x)=3 x^{4}+x^{3}+2 x^{2}+1$ by $g(x)=x^{2}+4 x+2$.
35. By stating necessary theorem show that the polynomial $3 x^{5}+15 x^{4}-20 x^{3}+10 x+20$ is irreducible over \mathbb{Q}, the set of rational numbers.
36. Prove that "In an integral domain, every prime is an irreducible".
37. Let F be a field and let a be a non zero element of F. If $f(x+a)$ is irreducible over F, prove that $f(x)$ is irreducible over F.
38. Let D be a Euclidean domain with measure d. Prove that u is a unit in D if and only if $d(u)=d(1)$.
($6 \times 4=24$ Marks)

SECTION - IV

Answer any two questions among the questions 39 to 44 . They carry 15 marks each.
39. Prove that "Let R be a commutative ring with unity and let A be an ideal of R. Then R / A is an integral domain if and only if A is prime".
40. (a) Let a and b be idempotents in a commutative ring. Show that each of the following is also an idemptotent :
(i) $a b$
(ii) $a-a b$
(iii) $a+b-a b$
(iv) $a+b-2 a b$.
(b) Show that a unit of a ring divides every element of the ring.
41. (a) Prove that "Let ϕ be a ring homomorphism from a ring R to a ring S. Then Ker $\phi=\{r \in R ; \phi(r)=0\}$ is an ideal of R ".
(b) Show that $\phi: \mathbb{Z}_{4} \mapsto \mathbb{Z}_{10}$ by $\phi(x)=5 x$ is a ring homomorphism.
42. Prove that "A polynomial of degree n over a field has at most n zeros, counting multiplicity".
43. Prove that "Let $f(x) \in \mathbb{Z}[x]$. If $f(x)$ is reducible over \mathbb{Q}, then it is reducible over Z ${ }^{\prime}$.
44. In $\mathbb{Z}[i]$, show that 3 is irreducible but 2 and 5 are not.
($\mathbf{2} \times 15=30$ Marks)

