Reg. No. :

Sixth Semester B.Sc. Degree Examination, April 2019 First Degree Programme under CBCSS MATHEMATICS Core Course MM 1642 : Linear Algebra (2013 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All the first 10 questions are compulsory. They carry 1 mark each.

1. When do we say that two matrices are equal?

2. Find
$$\begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$$
. $\begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}$

- 3. What is a consistant system of equations?
- 4. Define orthogonal matrices.
- 5. Define kernel of a linear transformation.
- 6. What is a linear isomorphism?
- 7. Define ordered basis.
- 8. If f = (1 6 4 3 5 2) and g = (2 6 5 3 1 4), find $g_0 f$.
- 9. What is a transposition?
- 10. Write an example of a tridiagonal matrix.

SECTION - II

Answer any 8 questions from among the questions 11 to 22. These questions carry 2 marks each.

- 11. Write out the 3×3 matrix whose entries are given by $x_{ij} = i + j$.
- 12. Prove that the addition of matrices is commutative.

P.T.Q.

G - 1389

-2-

- 13. If A is orthogonal, prove that A' is also orthogonal.
- 14. Prove that every non-zero matrix A can be transformed to a Hermite matrix by means of elementary row operations.
- 15. Define left inverse and right inverse of a matrix A.
- 16. If A and B are invertible matrices, prove that $(AB)^{-1} = B^{-1}A^{-1}$.
- 17. Prove that a 2×2 matrix is orthogonal if and only if it is of the form $\begin{bmatrix} a & b \\ -b & a \end{bmatrix} \text{ or } \begin{bmatrix} a & b \\ b & -a \end{bmatrix}.$
- 18. Determine which of the following mappings are linear?

a)
$$f(x, y, z) = (y, z, 0)$$

b)
$$g(x, y, z) = (|x|, z, 0)$$

- 19. Let $f: \mathbb{R}^3 \to \mathbb{R}^2$, be given by f(x, y, z) = (2x 3y + z, 3x 2y). Find the matrix off relative to the natural ordered basis of \mathbb{R}^3 and \mathbb{R}^2 .
- 20. Prove that transition matrices are invertible.
- 21. Define determinantal mapping.
- 22. Prove that a scalar λ is an eigenvalue of an n×n matrix A if and only if det $(A \lambda I_n) = 0$.

SECTION - III

Answer **any 6** questions from among the questions **23** to **31**. These questions carry **4** marks **each**.

- 23. Write a short note on an application of matrices.
- 24. Explain the effect of left multiplication by the matrix $\begin{bmatrix} 0 & \alpha & 1 \\ 0 & \beta & 0 \end{bmatrix}$
- 25. Reduce to row-echelon form of the matrix 3 1 2 . 5 5 8
- 26. Find the inverse of 1 2 3 1 1 4 4

- 27. If $f: \mathbb{R}^4 \to \mathbb{R}^3$ is defined as f(a, b, c, d) = (a + b, b c, a + d), find a basis for Im f.
- 28. Prove that a linear mapping is completely and uniquely determined by its action on basis.
- 29. Consider the linear mapping $f: \mathbb{R}^2 \to \mathbb{R}^3$ given by f(x, y) = (x + 2y, 2x y, -x). Determine the matrix of f
 - a) relative to the natural ordered basis
 - b) relative to the basis {(0, 1), (1, 1)} and {(0, 0, 1), (0, 1, 1), (1, 1, 1)}.
- 30. Find the determinant of A = $\begin{bmatrix} 1 & -1 & 2 & 3 \\ 2 & 2 & 0 & 2 \\ 1 & 2 & 3 & 0 \\ 5 & 3 & 2 & -1 \end{bmatrix}$
- 31. Prove that every connected graph has at least one spanning tree.

SECTION - IV

Answer any 2 questions from among the questions 32 to 35. These questions carry 15 marks each.

32. Given
$$A = \begin{bmatrix} 1 & 2 & -1 & -2 \\ -1 & -1 & 1 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix}$$
, find P and Q such that PAQ = N,

where N is the normal form of A.

- 33. State and prove dimension theorem.
- 34. Prove that the rank of a linear mapping f is same as the rank of any matrix that represents f.
- 35. Find the limiting value of the sequence 2, $2 + \frac{1}{2}$, $2 + \frac{1}{2 + \frac{1}{2}}$, $2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}}$, ...