

(Pages : 3)

Reg. No. :

Sixth Semester B.Sc. Degree Examination, April 2019 First Degree Programme under CBCSS MATHEMATICS Core Course MM 1641 : Real Analysis – II (2014 Admission Onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All the first 10 questions are compulsory. Each carries 1 mark.

- 1. The function $g: \mathbb{R} \to \mathbb{R}$ defined by g(x) = 2x for x rational, and g(x) = x + 3 for x irrational is continuous at $x = \underline{\hspace{1cm}}$
- 2. Give an example for a function on [0, 1] that is discontinuous at every point of [0, 1] but | f | is continuous on [0, 1].
- 3. Find the points at which the function f(x) = |x| + |x + 1| is not differentiable.
- 4. Using L'Hospital's Rule, find $\lim_{x\to 1} \frac{\ln x}{x-1}$.
- 5. Define a convex function on an interval $I \subseteq \mathbb{R}$.
- 6. Let $g(x) = |x^3|, x \in \mathbb{R}$. Find g'(x) for $x \neq 0$.
- 7. The norm of the partition P = (0, 1.5, 2, 3.4, 4) is _____
- 8. If $F(x) = \frac{1}{2}x^2$ for all $x \in [a,b]$, is the antiderivative of f on [a,b], evaluate $\int_a^b f$.
- 9. Define a step function.
- 10. If J=[c,d] is a subinterval of [a,b] and $\phi_{_J}(x)=1$ for $x\in J$ and $\phi_{_J}(x)=0$, elsewhere in [a,b], then evaluate $\int_a^b\phi_J$.

SECTION - II

3

Answer any 8 questions from this Section. Each question carries 2 marks.

- 11. Show that the Dirichlet's function defined on \mathbb{R} by, $f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$
- If l = [a, b] is a closed and bounded interval and f: l→ ℝ is continuous on l, prove that f is bounded on l.
- 13. Show that the function $f(x) = \sin x$ is continuous on \mathbb{R} .
- 14. If $m \in \mathbb{Z}$, $n \in \mathbb{N}$ and x > 0, prove that $x^{\frac{m}{n}} = (x^m)^{\frac{1}{n}}$.
- 15. If f and g are differentiable at c, show that f g is differentiable at c and (fg)'(c) = f'(c)g(c) + f(c)g'(c)
- 16. Find f'(0), if $f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right), & \text{for } x \neq 0 \\ 0 & \text{for } x = 0 \end{cases}$
- 17. If $f: I \to \mathbb{R}$ has a derivative at $c \in I$, show that f is continuous at c.
- 18. Explain briefly the tagged partition of a closed interval [a, b].
- 19. If f, $g \in R[a,b]$ show that $f + g \in R[a,b]$.
- 20. State and prove boundedness theorem for Riemann integral.
- 21. Show that the set Q₁ of rational numbers in [0, 1] is a null set.
- 22. If c is an interior point of an interval I at which $f: I \to \mathbb{R}$ has an extremum and if f'(c) exists, then prove that f'(c) = 0.

SECTION - III

Answer any 6 questions from this Section. Each question carries 4 marks.

- 23. State and prove Maximum Minimum Theorem.
- 24. State and prove Caratheodry Theorem.

- 25. If $f(x) = \begin{cases} 2, & 0 \le x < 1 \\ 1, & \text{if } 1 \le x \le 2 \end{cases}$. Show that $f \in R[0, 2]$ and evaluate the integral.
- 26. State and prove squeeze theorem.
- 27. Let $I \subseteq \mathbb{R}$ be an interval and let $f: I \to \mathbb{R}$ be monotone on I. Then prove that the set of points $D \subseteq I$ at which f is discontinuous is a countable set.
- 28. State and prove Rolle's Theorem.
- 29. Let $g: \mathbb{R} \to \mathbb{R}$ be defined by $g(x) = x + 2x^2 \sin\left(\frac{1}{x}\right)$, for $x \neq 0$ and g(0) = 0. Show that g is not monotonic in any neighborhood of 0.
- 30. Prove that $1 \frac{1}{2}x^2 \le \cos x$ for all $x \in \mathbb{R}$.
- 31. If F, G are differentiable on [a, b], and f = F', g = G' belongs to R[a, b], then prove that $\int_a^b fG = FG/\frac{b}{a} \int_a^b Fg$.

Answer any 2 questions from this Section. Each question carries 15 marks.

- 32. a) State and prove location of roots theorem.
 - b) State and prove continuous inverse theorem.
- 33. a) State and prove Cauchy criterion for Riemann integrability.
 - b) If $f:[a,b] \to \mathbb{R}$ is continuous on [a,b], then prove that $f \in R[a,b]$.
- 34. a) State and prove additivity theorem.
 - b) If f and g are Riemann Integrable prove that fg is Riemann Integrable.
- 35. a) Let I be an open interval and let $f: I \to \mathbb{R}$ have a second derivative on I. Then prove that f is a convex function if and only if $f''(x) \ge 0$ for all $x \in I$.
 - b) Use Newton's Method to find an approximate value of $\sqrt{2}$.