Name :

Fifth Semester B.Sc. Degree Examination, December 2021

First Degree Programme under CBCSS

Mathematics

Core Course V

MM 1541 : REAL ANALYSIS - I

(2018 and 2019 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All the first 10 questions are compulsory. They carry 1 mark each.

- 1. State the axiom of completeness.
- 2. Give an example of infinite countable set.
- 3. State the Supremum property of R.
- 4. Find the limit points of the set $A = \left\{\frac{1}{n} : n \in N\right\}$.
- 5. Find $\lim_{n \to \infty} \frac{n}{2n+1}$.
- 6. What does it mean to say that a sequence (a_n) converges?
- 7. Give an example of a sequence which is bounded but not convergent.
- 8. Give an example of an open set which is not an interval.

9. Find the closure of $B = \left\{\frac{1}{3^n} n \in N\right\}$.

10. Give an example of a divergent sequence with converging subsequence.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions. Each question carries 2 marks.

11. State the cut property of the real numbers.

12. Is the set of irrational real numbers countable? Justify.

- 13. Define a Cauchy sequence.
- 14. Show by an example that every bounded real sequence may not be convergent.
- 15. Show that the sequence $\{a_n\}$ defined by $a_1 = \sqrt{2}$ and $a_{n+1} = \sqrt{2a_n}$ for $n \ge 1$ converges to 2.
- 16. Check whether the sequence $\{n + (-1)^n\}$ is monotonic or not.
- 17. Show that the sequence $\{(-1)^n\}$ is not convergent.
- 18. Show that every convergent sequence is bounded.
- 19. Test for convergence the series $\sum_{n=0}^{\infty} \frac{1}{2^n}$.
- 20. Discuss the convergence of $\sum \frac{1}{n^p}$.
- 21. Show that the series $\sum_{n=0}^{\infty} \frac{n}{n+1}$ diverges.
- 22. State the comparison test for convergence of series.

- 23. Show that the series $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n^2 + 1}}$ is divergent.
- 24. If the series $\sum_{k=1}^{\infty} a_k$ converges, then show that $\lim_{k \to \infty} a_k = 0$.
- 25. Discuss the convergence of geometric series.
- 26. State Baire's theorem

(8 × 2 = 16 Marks)

SECTION - III

Answer any six questions. Each question carries 4 marks.

- 27. If $a, b \in R$ and a < b, show that there exists $r \in Q$ such that a < r < b.
- 28. Suppose that $\{a_n\}, \{b_n\}$ and $\{c_n\}$ are sequences such that $a_n \le b_n \le c_n$ for all $n \ge 10$, and that $\{a_n\}$ and $\{c_n\}$ both converge to 12. Then show that $\{b_n\}$ also converges to 12.
- 29. Define a Cantor set.
- 30. State and prove the Archimedean property of R.
- 31. Show that the sequence $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots$ is strictly monotone and bounded.
- 32. Show that sub sequences of a convergent sequence converge to the same limit as the original sequence.
- 33. Show that the union of arbitrary collection of open sets is open.
- 34. Show that the sequence $\left\{\frac{2n+3}{3n-2}\right\}$ is convergent.
- 35. Every convergent sequence is a Cauchy sequence.
- 36. Prove that Cauchy sequences are bounded.
- 37. Show that the series $\sum_{n=1}^{\infty} \frac{\cos(n)}{n^2}$ is convergent.
- 38. Prove that A set $E \subset R$ is connected if and only if whenever a < c < b with $a, b \in E$ then $c \in E$.

 $(6 \times 4 = 24 \text{ Marks})$

M – 1456

3

SECTION - IV

Answer any two questions. Each question carries 15 marks.

- 39. (a) Show that the open interval $(0, 1) = \{x \in R : 0 < x < 1\}$ is uncountable.
 - (b) State and prove nested interval property of real numbers
- 40. (a) State and prove Cauchy Condensation Test.
 - (b) Prove that every bounded infinite set has at least one limit point.
- 41. (a) Establish Cauchy criteria for convergence of sequence of real numbers.
 - (b) If (a_n) and (b_n) are two sequences of real numbers converge to a and b respectively, then show that $\lim(a_n + b_n) = \lim a_n + \lim b_n = a + b$.
- 42. (a) Let $x_1 = 2$ and $x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right)$ for $n \ge 1$. Show that x_n convergence and find its limit.
 - (b) If the series $\sum_{n=1}^{\infty} |a_n|$ converges, then show that $\sum_{n=1}^{\infty} a_n$ converges as well. Is the converse true? Justify.
- 43. (a) State and prove Monotone convergence theorem.
 - (b) Show that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges
- 44. State and prove Heine Borel theorem.

$(2 \times 15 = 30 \text{ Marks})$

SECTION - IV

Answer any two questions. Each question carries 15 marks.

- 39. (a) Show that the open interval $(0, 1) = \{x \in R : 0 < x < 1\}$ is uncountable.
 - (b) State and prove nested interval property of real numbers
- 40. (a) State and prove Cauchy Condensation Test.
 - (b) Prove that every bounded infinite set has at least one limit point.
- 41. (a) Establish Cauchy criteria for convergence of sequence of real numbers.
 - (b) If (a_n) and (b_n) are two sequences of real numbers converge to a and b respectively, then show that $lim(a_n + b_n) = lima_n + limb_n = a + b$.
- 42. (a) Let $x_1 = 2$ and $x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right)$ for $n \ge 1$. Show that x_n convergence and find its limit.
 - (b) If the series $\sum_{n=1}^{\infty} |a_n|$ converges, then show that $\sum_{n=1}^{\infty} a_n$ converges as well. Is the converse true? Justify.
- 43. (a) State and prove Monotone convergence theorem.
 - (b) Show that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges
- 44. State and prove Heine Borel theorem.

 $(2 \times 15 = 30 \text{ Marks})$

M – 1456