(P	a	a	e	S	:	4)	
١	•	-	23	-	**		.,	

Reg. I	Vo.	:	•••	•••	••	••	•••	•••	•••	•••	•••	•	•••	 • •
Name	:							•••		•••				

Fourth Semester B.Sc. Degree Examination, July 2019 First Degree Programme Under CBCSS Complementary Course for Mathematics ST 1431.1 – STATISTICAL INFERENCE

(2013 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - A

Answer all questions. Each question carries 1 mark.

- 1. Define point estimation.
- 2. What do you mean by completeness of an estimate?
- 3. Define minimum variance unbiased estimate.
- 4. What is the interval estimate of the population mean when population variance is known?
- 5. What is a hypothesis?
- 6. Define critical region of a test.
- 7. Distinguish between null and alternative hypothesis.
- Distinguish between type I and type II errors.
- 9. Discuss any two applications of chi square test.
- 10. Explain briefly local control in experimental design.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

Answer any eight questions. Each question carries 2 marks.

- 11. Define consistency. State and prove the sufficient conditions for consistency.
- 12. When would you say that an estimate is more efficient than another?
- 13. Find by the method of moments, an estimate for the Poisson parameter λ .
- 14. Explain the method of maximum likelihood estimation.
- 15. Define sufficiency.
- 16. Derive the confidence interval for the variance of a normal distribution.
- 17. If X₁, X₂, ..., X_n is a random sample from a normal population with mean μ and variance I, show that $t = \frac{1}{n} \sum_{i=1}^{n} \chi_i^2$ is an unbiased estimate of $\mu^2 + 1$.
- 18. State the Neyman-Pearson theorem in funding the maximum powerful critical region.
- 19. A population has pdf $f(x) = \frac{1}{4}$, $\theta 2 \le X \le \theta + 2$. To test H_0 : $\theta = 5$ against $H_1 = \theta = 8$, based on a sample of size 1, it is suggested to reject the hypothesis if $\chi \ge 6$. Find the significance level and power of the test.
- Explain paired t test.
- Explain the test procedure in testing the equality of variances of two normal populations.
- 22. Explain briefly randomization and replication in the design of experiments.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Answer any six questions. Each question carries 4 marks.

- 23. State Fisher-Neyman factorization theorem. Use it to show that sample mean is sufficient for estimating the parameter μ in (μ, σ) where σ is known.
- 24. If the random variable X has pdf f(x) = $(\beta + 1) \chi^{\beta}$, $0 \le \chi \le 1$, $\beta > 0$. Obtain the maximum likelihood estimate of β .
- 25. A random sample of size 10 from a normal population with S.D 5 gave the following observations: 65, 72, 71, 85, 73, 76, 67, 70, 74, 76. Calculate the 95% confidence interval for the population mean.
- 26. Explain testing of equality of proportions of items in the same class on the basic of two independent samples drawn from two populations.
- 27. The following data gives marks obtained by a sample of 10 students before and after a period of training. Assuming normality test whether the training was of any use.

Student no :	1	2	3	4	5	6	7	8	9	10
Before:	91	95	81	83	76	79	101	85	88	81
After:	88	89	97	88	.92	92	90	99	97	87

- 28. A machine puts out 16 imperfect articles in a sample of 500. After the machine was overhauled it puts out 3 imperfect articles in a batch of 100. Has the machine improved in its performance?
- 29. Explain the chi-square test of goodness of fit.
- 30. Show that if t is a consistent estimator of θ , then t^2 is also a consistent estimator of θ^2 .
 - 31. What are the important assumptions underlying the analysis of variance techniques?

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Answer any two questions. Each question carries 15 marks.

- 32. (a) Discuss the desirable properties of a good estimator.
 - (b) Derive the confidence interval for the difference of means of two normal populations.
 - (c) A random sample of 20 bullets produced by a machine shows an average diameter of 3.5 mm and a S.D of 0.2 mm. Assuming that the diameter measurement follows $N(\mu, \sigma)$, obtain a 95% internal estimate for the mean and 99% interval estimate for the true variance.
 - 33. (a) Estimate the parameters of a normal population by the method of moments.
 - (b) State Cramer-Rao Lower Bound for the variance of an unbiased estimator of a parameter θ .
 - (c) Explain method of minimum variance estimation show that the minimum variance unbiased estimator for the parameter μ is the sample mean when sample is drawn from N(μ , σ), σ known.
 - 34. (a) Explain chi-square test of independence of qualitative characteristics.
 - (b) A die was thrown 180 times. The following results were obtained.

No. turning up:	1	2	3	4	,5	6
Frequency:	25	35	40	22	32	26

Test whether the die is unbiased

- 35. (a) Explain analysis of variance.
 - (b) Derive the ANOVA table foe one way classification.

 $(2 \times 15 = 30 \text{ Marks})$