| Reg. N | 10  | • | : |  |  |      |  | • | ٠ |  | • • |  | • |  |  | • • |  |
|--------|-----|---|---|--|--|------|--|---|---|--|-----|--|---|--|--|-----|--|
| Name   | : . |   |   |  |  | <br> |  |   |   |  |     |  |   |  |  |     |  |

# Fourth Semester B.Sc. Degree Examination, March 2020 First Degree Programme under CBCSS

### **Complementary Course**

## PY 1431.1/PY 1431.3 MODERN PHYSICS AND ELECTRONICS

(For Mathematics and Statistics)

(2014-2017 Admission)

Time: 3 Hours

Max. Marks: 80

#### SECTION - A

Answer all questions in One or Two sentences. Each question carries 1 mark.

- 1. What is Bohr correspondence Principle
- 2. Define half life of a radioactive element
- 3. What is nuclear binding energy
- Write time dependent Schrodinger equation.
- 5. What is Phase reversal of a transistor amplifier
- 6. Draw the circuit symbol of an OR Gate.
- 7. Define Q-point.
- 8. Define the Planck's hypothesis of quantum theory

- 9. Draw the frequency response curve of a single stage CE amplifier.
- 10. State De Morgan's theorems.

 $(10 \times 1 = 10 \text{ Marks})$ 

#### SECTION - B

Answer any eight questions, not exceeding a paragraph. Each question carries 2 marks.

- 11. 1 gram of a radioactive substance disintegrates at the rate of 3.7x10<sup>10</sup> disintegration per second. The atomic weight of a substance is 226. Calculate the mean life.
- 12. Describe the vector model of an atom and explain the different quantum numbers associated with it.
- 13. Explain the salient features of nuclear force.
- 14. What are the inadequacies in classical mechanics?
- 15. What is wave function? What is its importance in quantum mechanics?
- 16. Define Peak inverse voltage. What is the Peak inverse voltage of a half wave rectifier
- 17. Draw the circuit diagram and explain the functioning of affixed bias circuit.
- Explain the forward bias characteristics of a pn junction diode.
- 19. Briefly discuss the characteristics of a zener diode
- 20. Convert the following numbers in to binary
  - (a) 74<sub>10</sub>
  - (b) 136<sub>10</sub>
- 21. Write a short note on hexadecimal numbers
- 22. Draw the block diagram and truth table of an NOR and NAND Gate.

 $(8 \times 2 = 16 \text{ Marks})$ 

## SECTION - C

Answer any six questions. Each question carries 4 marks.

- How long does it take for 60 percent of a sample of radon to decay? Half life of radon is 3.8 days.
- 24. Calculate the probability density for the wave function  $\psi(x) = u(x) \exp[i\phi(x)]$ , where u,  $\Phi$  are real.
- 25. A diode with  $_{V\!F}$ =0.7V is connected to as a half wave rectifier. The load resistance is 500 $\Omega$  and the (rms) ac input is 22V. Determine the peak output voltage, the peak load current and the diode peak inverse voltage.
- 26. A transistor uses potential divider method of biasing.  $R_1 = 50 K\Omega$ ,  $R_2 = 10 K\Omega$  and  $R_L = 1 K\Omega$ . if  $V_{CC} = 12$ , find
  - (a) The value of  $I_C$ ; given  $V_{BE} = 0.1V$
  - (b) The value of  $I_C$ ; given  $V_{BE} = 0.3V$ . Comment on the result.
- 27. In a single stage amplifier, the parameters are  $\beta = 150$ ,  $r_i = 2K\Omega$ ,  $R_c = 4.7K\Omega$ .  $R_I = 12K\Omega$ . Find the power gain.
- 28. For a transistor amplifier shown in figure,  $V_{CC} = 12V$ ,  $R_1 = 20K\Omega$ ,  $R_2 = 10K\Omega$ ,  $R_C = 1K\Omega$ ,  $R_E = 2K\Omega$  and  $R_L = 1K\Omega$ . Draw the AC load line for the circuit given below. (neglect  $V_{BE}$ ).



#### 29. Convert

- (a) hexadecimal number into decimal (i) 56<sub>16</sub> (ii) AF<sub>16</sub>
- (b) Octal number into decimal (i) 56<sub>8</sub> (ii) 137<sub>8</sub>
- 30. Subtract the decimal numbers 38 from 25 in 2's complement from.
- 31. Simplify the Boolean expression:  $X = \overline{ABC} + \overline{ABC$

 $(6 \times 4 = 24 \text{ Marks})$ 

## SECTION - D

Answer any two questions. Each question carries 15 mark.

- Draw the circuit diagram and explain the working of a single stage CE amplifier also explain the frequency response curve and mention the bandwidth.
- 33. Derive Schrodinger's time independent wave equation. Hence derive the expression for energy of a particle in a box.
- 34. State and explain the law of radioactive disintegration, show that the number of atoms of a radioactive element decreases exponentially with time.
- 35. Draw the circuit diagram and explain the working of a full wave bridge rectifier. Also derive the expression for  $I_{dc}$ ,  $I_{ms}$  ripple factor, efficiency and Peakinverse voltage.

 $(2 \times 15 = 30 \text{ Marks})$