Reg. No.:.....

Name:

Fourth Semester B.Sc. Degree Examination, July 2018 First Degree Programme under CBCSS Complementary for Mathematics and Statistics PY 1431.1/ 1431.3: MODERN PHYSICS AND ELECTRONICS (2013 Admission Onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - A

Answer all questions in one or two sentences. Each question carries one mark.

- 1. What is meant by a wave packet?
- 2. What is meant by normalized wave function?
- 3. Convert 64H to its equivalent octal and binary form.
- 4. What are the coupling schemes used in vector atom model to find the total angular momentum of the atom?
- 5. What is packing fraction?
- 6. Define mean life of a radioactive sample.
- 7. Draw the V-I characteristics of a PN junction diode.
- 8. Define knee voltage.
- 9. Write down the truth table of an AND gate.
- 10. What are universal gates? Why are they called so?

 $(10\times1=10 \text{ Marks})$

SECTION - B

Answer any eight questions, not exceeding a paragraph. Each question carries two marks.

- 11. Distinguish between group velocity and wave velocity.
- 12. Explain Planck's Quantum theory of radiation.
- 13. Hydrogen has only one electron still it emits a series of spectral lines. How is this possible?
- 14. Briefly explain J-J coupling scheme.

- 15. What are magic numbers? Why are they called so?
- 16. Explain BCD system. What is its advantage over other systems?
- 17. Distinguish between avalanche breakdown and zener breakdown.
- 18. What are the advantages of voltage divider biasing over other types of transistor biasing?
- 19. Distinguish between AC and DC resistance of a diode.
- 20. Define Q point. What is its importance?
- Discuss the logical operation of an OR gate using equivalent electronic circuit. Also obtain its truth table.
- 22. State and explain De Morgan's theorems.

(8×2=16 Marks)

SECTION - C

Answer any six questions. Each question carries four marks.

- 23. Write a note on the normalization of wave function.
- 24. Determine the de Broglie wavelength associated with an electron having kinetic energy 5eV. $h = 6.624 \times 10^{-34} Js$, mass of the electron = $9.1 \times 10^{-31} kg$.
- 25. The wavelength of H $_{\beta}$ line of hydrogen spectrum is 4862 $\mathring{\text{A}}$. Calculate the wavelength of H $_{\alpha}$ line in the same spectrum.
- 26. Find the binary equivalent of -25 and -10. Also find the sum of these two numbers.
- Given the mass of a proton is 1.007825u, mass of a neutron is 1.008665 u
 and mass of a deuteron is 2.01103u. Calculate the binding energy of
 deuteron.
- 28. The half life of ¹⁴C isotope is 5730 years. If a sample of ¹⁴C contains 10²² nuclei, what is the activity of the sample ?
- 29. A 9.1Vzener is connected to load of 500 ohms with a series resistance of 270 ohms to a source of 15V. Calculate
 - 1) output voltage
 - 2) load current
 - 3) zener current

- 30. In a CE transistor amplifier circuit, $V_{cc}=12V$, $R_1=10k$, $R_2=6K$, $R_E=3.5 k$, V=6.4k, $V_{BE}=0.7V$. Calculate Ic and Vc.
- 31. Draw the logic circuits for each of the following expressions.
 - a) AB+C
 - b) $\overline{A}B + (C + \overline{D})$

(6×4=24 Marks)

SECTION - D

Answer any two questions. Each question carries fifteen marks.

- 32. Give an account of the Bohr model of the atom. Explain the origin of spectral lines of hydrogen on the basis of Bohr atom model.
- 33. Derive the time dependent Schrodinger Equation for a free particle.
- 34. What is meant by binding energy of a nucleus. Explain the features of the binding energy curve and explain the stability of the nucleus.
- 35. With the help of a neat diagram, explain the working of a single stage transistor amplifier. Obtain the expressions for current gain, voltage gain and power gain.

(2×15=30 Marks)