Reg. No. : Name :

Fourth Semester B.Sc. Degree Examination, June 2020

First Degree Programme under CBCSS

Physics

Complementary Course

PY 1431.1/PY 1431.3 : MODERN PHYSICS AND ELECTRONICS

(For Mathematics and Statistics)

(2014-2017 Admission)

Time : 3 Hours

Max. Marks: 80

SECTION - A

Answer all questions in one or two sentences. Each questions carries 1 mark.

- 1. State Pauli's exclusion Principle.
- 2. Define mean life of a radioactive element
- 3. What is packing fraction?

- 4. What do you meant by probability density
- 5. Write time independent dependent Schrodinger equation.
- What is Nuclear binding energy.
- 7. Draw the circuit diagram of CE amplifier
- 8. Draw the symbol of NAND gate and write down the Boolean expression for it.
- 9. Define 2's compliment form.
- 10. Convert 99₁₀ in to binary.

 $(10 \times 1 = 10 \text{ Marks})$

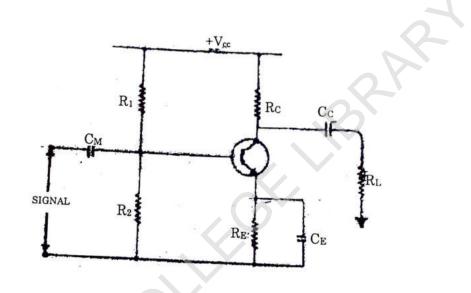
SECTION - B

Answer any eight questions, not exceeding a paragraph. Each questions carries 2 marks.

- 11. Explain how quantum numbers are defined in vector atom model
- 12. Explain the spin orbit coupling of an electron in an atom
- 13. Write a note on nuclear detectors.
- 14. Explain Planck's Quantum hypothesis
- 15. What are the inadequacies in classical mechanics?
- 16. Draw the circuit diagram and explain the working of a half wave rectifier

- and mention the band width
- 18. What is meant by Q point? Explain the stability of Q point
- 19. Draw the circuit diagram and explain the working of zener diode voltage regulator.
- 20. Draw the Symbol and truth table of NOR gate.
- 21. State and Explain De Morgan's theorem.
- 22. Write a short note on octal and hexadecimal numbers.

 $(8 \times 2 = 16 \text{ Marks})$

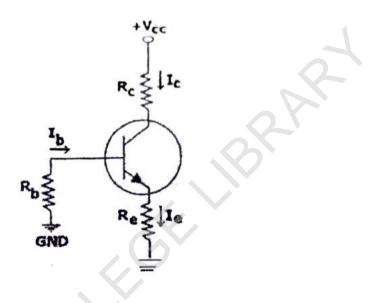

SECTION - C

Answer any six questions. Each question carries 4 marks.

- 23. 1gmof a radioactive substance of atomic weight 226 disintegrates at a rate of 3.7×10^{10} disintegration per second. Calculate the decay constant, half life and mean life.
- 24. Calculate the probability density for the wave function $\psi(x) = u(x) \exp[i\phi(x)]$ where u, Φ are real.
- 25. A full wave rectifier the load resistance is $1K\Omega$. The forward dynamic resistance of each diode is 10Ω . The voltage across secondary winding is 220 sin 200t. Find the
 - (a) Peak value of current.
 - (b) Average dc value of current.
 - (c) the rms value of current.
 - (d) The rectification efficiency.

3

- 26. A Transistor is connected in CE configuration. The voltage drop across $5K_{\Omega}$ resistance which is connected in the collector circuit is 5 Volts. Find the base current. The current gain α of the amplifier is 0.98.
- 27. For a transistor amplifier shown in figure, $V_{cc} = 15V$, $R_1 = 10 K \Omega$, $R_2 = 5 k \Omega$, $R_c = 1K\Omega$, $R_E = 2\Omega$ and $R_L = 1K\Omega$. Draw the DC load line and hence find the operating point, Given $V_{BE} = 0.7V$


28. Convert

- (a) hexadecimal number in to decimal
 - (i) AB₁₆
 - (ii) 7A₁₆
- (b) Octal number in to decimal
 - (i) 75₈
 - (ii) 126₈

29. Subtract the decimal numbers 29 from 21 in 2's complement form.

٠

- 30. A Simplify the Boolean expression: X = ABC + ABC + ABC + ABC.
- 31. Determine the Q point of the transistor circuit shown in figure. Also draw the d.c. load line $R_c = 1K\Omega$, $R_g 47 K\Omega$, $R_{\varepsilon} = 4.7 K\Omega$, $V_{cc} = 10V$, $\beta = 100$ and $V_{cc} = 0.7V$.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Answer any two questions. Each question carries 15 mark

- 32. State and explain the law of radioactive disintegration. Show that the number of atoms of a radioactive element decreases exponentially with time.
- 33. Derive time dependent Schrodinger equation. Explain the significance of wave function

- 34. What is the need for biasing? Draw the Circuit diagram and explain the working of any two biasing circuits.
- 35. Draw the circuit diagram and explain the working of a full wave rectifier. Also derive the expression for I_{dc} , I_{rms} ripple factor, efficiency and Peak inverse voltage

(2 × 15 = 30 Marks)