(Pages : 4)	: 4)	es	Pag	(
-------------	------	----	-----	---

Reg. N	10).			=	•	• •		•	•	•	•		*		,	R		• •	
Name	:			 			_						 							

Third Semester B.Sc. Degree Examination, March 2021

First Degree Programme Under CBCSS

Statistics

(Complementary Course for Mathematics)

ST 1331.1 — PROBABILITY, DISTRIBUTIONS AND THEORY OF ESTIMATION

(2015 - 2017 Admission)

Time: 3 Hours

Max. Marks: 80

Use of Statistical Table and calculator is permitted.

SECTION - A

Answer all questions. Each question carries 1 mark.

- 1. Write the recurrence relationship for Binomial probabilities.
- 2. The moment generating function of a random variable X is $\frac{0.75}{1-0.2e^{t'}}$. Find the mean of X.
- 3. If X and Y are independent Poisson random variables, what is conditional distribution of X given X+Y?
- 4. Define convergence in probability.
- 5. Write the sampling distribution of the sample mean of a random sample drawn from Normal distribution.

- 6. If the mean of a Chi square random variable is 5, compute its variance.
- 7. Define *t* statistic.
- 8. Give an example for a maximum likelihood estimator which is unbiased and sufficient.
- 9. Write the 95% confidence interval for the variance σ^2 of a Normal population.
- 10. What is the use of Cramer Rao lower bound?

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

Answer any eight questions. Each question carries 2 marks.

- 11. Obtain the variance of discrete Uniform distribution.
- 12. Show that exponential distribution is a special case of Gamma distribution.
- 13. Define Beta distribution.
- 14. Derive the mean of hypergeometric distribution.
- 15. Write Chebyshev's inequality. Write its significance.
- 16. State Lindberg Levy central limit theorem.
- 17. What is meant by sampling distribution?
- 18. Prove the reciprocal property of F distribution.
- 19. Write the properties of method of moments for estimation.
- 20. Discuss interval estimation.
- 21. Define consistency of an estimator. Write an example for consistent estimator.
- 22. Let $x_1, x_2,, x_n$ be a random sample from Normal $(\mu, 1)$. Show that $\frac{1}{n} \sum_{i=1}^{n} x_i^2$ is an unbiased estimator of $\mu^2 + 1$.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Answer any six questions. Each question carries 4 marks.

- 23. Derive the mode of Poisson distribution.
- 24. Establish the lack of memory property of geometric distribution.
- 25. If X is a Normal random variable with mean 11 and variance 2.25, find the value of k when
 - (a) P(X > k) = 0.3 and
 - (b) P(X < k) = 0.09.
- 26. Derive the moment generating function of Gamma distribution and hence obtain its mean and variance.
- 27. Let X be a random variable with probability density function $f(x) = e^{-x}$, x > 0. Compute the upper bound of $P(|X-1| \ge 4)$ using Chebyshev's inequality.
- 28. If X and Y are independent and identically distributed Chi square random variables with 1 degrees of freedom. Find the value of k such that $P(X + Y \ge k) = 0.5$.
- 29. Derive the relationship between Chi square, t and F distributions.
- 30. Explain the method of maximum likelihood estimation. Write its properties.
- 31. Consider a random sample drawn from Binomial (*n*, *p*). Derive an estimate of *p* using the method of moments. Also check whether the estimator is unbiased or not.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Answer any two questions. Each question carries 15 marks.

32. (a) Fit a Binomial distribution for the following data and find the expected frequencies.

Values 0 1 2 3 4

Frequency 8 32 34 24 5

- (b) Derive Poisson distribution as a limiting form of Binomial distribution.
- 33. (a) Derive the even order central moments of Normal distribution.
 - (b) Let X be a Normal random variable with mean 50 and variance 16. Compute the probabilities of
 - (i) X < 60
 - (ii) X > 60
 - (iii) 32 < X < 48
 - (iv) 52 < X < 58
- 34. (a) State and prove Bernoulli's law of large numbers.
 - (b) Check whether the weak law of large numbers holds good for the sequence $\{X_n\}$ of independent and identically distributed random variables with

$$P\left(X_n = \frac{1}{\sqrt{n}}\right) = \frac{3}{4} \text{ and } P\left(X_n = \frac{1}{\sqrt{n}}\right) = \frac{1}{4}.$$

- 35. (a) Explain the method of point estimation.
 - (b) Derive the confidence interval for the mean of a Normal population when the population standard deviation is known and when it is unknown.

 $(2 \times 15 = 30 \text{ Marks})$