Reg. No.	:	
	•	
Name:		

Third Semester B.Sc. Degree Examination, October 2019

First Degree Programme under CBCSS

Mathematics

Core Course - 2

MM 1341 ELEMENTARY NUMBER THEORY AND CALCULUS I

(2018 Admission)

Time: 3 Hours

Max. Marks: 80

PART - A

Answer all the ten are compulsory. They carry 1 mark each.

- 1. Multiply 1011_{two} and 101_{two}.
- 2. Let f(n) denote the number of positive integers $\le n$ and relatively prime to it. Find f(24).
- 3. Find the domain of r(t) and the value of $r(t_0)$.

where
$$r(t) = \cos t i - 3t j$$
; $t_0 = \pi$

4. Find r'(t) if

$$r(t) = (\tan^{-1} t)i + t \cos t j - \sqrt{tk}$$

5. Evaluate $\int \langle te^t, \ln t \rangle dt$.

- 6. Find the unit tangent vector to the graph of $r(t) = t^2 i + t^3 j$ at the point where t = 2.
- 7. Determine whether the statement "If r(s) is parameterized by arc length, then the curvature of the graph of r(s) is the length of r'(s)." Is true or false?
- 8. Find $\lim_{(x,y)\to(0,0)} \ln(1+x^2y^3)$.
- 9. Find $f_x(x,y), f_y(x,y) \text{ of } f(x,y) = \frac{1}{xy^2 x^2y}$.
- 10. Find the gradient of $f(x, y) = 5x^2 + y^4$ at (4, 2).

 $(10 \times 1 = 10 \text{ Marks})$

PART - B

Answer any eight questions from this section. Each question carries 2 marks.

- 11. Show that $n^3 n$ is divisible by 2.
- 12. Express 3014 in base eight.
- 13. Using recursion, evaluate (18, 30, 60, 75, 132).
- 14. Find the parametric equations that correspond to the given vector equation.

$$r = 3t^2 i - 2 j$$

- 15. Evaluate the definite integral $\int_{0}^{2} (2t i + 3t^2 j) dt$.
- 16. Find the arc length of the parametric curve.
- 17. Find the curvature of $x = e^t \cos t$, $y = e^t \sin t$, $z = e^t \cot t = 0$.
- 18. Suppose that w = xy + yz, $y = \sin x$, $z = e^x$. Use an appropriate form of the chain rule to find $\frac{dw}{dx}$.

- 19. Find the displacement of $r = t^2i + \frac{1}{3}t^3j$ in the interval $1 \le t \le 3$.
- 20. Describe the largest region on which the function $f(x, y, z) = 3x^2e^{yz} \cos(xyz)$ is continuous.
- 21. Given $f(x, y) = x^3y^5 2x^2y + x$, find f_{xxy} and f_{yxy} .
- 22. Find an equation for the tangent plane to the surface $x^2 + y^2 + z^2 = 25$ at the point P(-3, 0,4).

 $(8 \times 2 = 16 \text{ Marks})$

PART - C

Answer any six questions from this section. Each question carries 4 marks.

- 23. Show that the number of leap years / after 1600 and not exceeding a given year y is given by I = [y/4] [y/100] + [y/400] 388.
- 24. Show that "If p and $p^2 + 2$ are primes, then $p^3 + 2$ is also a prime."
- 25. A six-digit positive integer is cut up in the middle into two three-digit numbers. If the square of their sum yields the original number, find the number.
- 26. Find the escape speed in km/s for a space probe in a circular orbit that is 300 km above the surface of the Earth.
- 27. A particle moves along the parabola $y = x^2$ with a constant speed of 3 units per second. Find the normal scalar component of acceleration as a function of x.
- 28. Suppose that a particle moves along a circular helix in 3-space so that its position vector at time t is $r(t) = (4\cos t\pi)i + (4\sin \pi t)j + tk$. Find the distance traveled and the displacement of the particle during the time interval $1 \le t \le 5$.
- 29. Locate all relative maxima, relative minima, and saddle points, if any for the function $f(x, y) = y^2 + xy + 3y + 2x + 3$.
- 30. Find the point on the plane x + 2y + 3z = 13 closest to the point (1, 1, 1).
- 31. Find the dimensions of the closed right circular cylindrical can of smallest surface area whose volume is 16π cm³. (6 × 4 = 24 Marks)

Answer any two questions from this section. Each question carries 15 marks.

- 32. (a) Find the number of positive integers \le 3000 and divisible by 3, 5, or 7.
 - (b) Every positive integer n can be written as $n = 2^a 5^b c$, where c is not divisible by 2 or 5.
 - (c) Find the canonical decomposition of 2520.
- 33. (a) Solve the vector initial-value problem for $y'(t) = 2ti + 3t^2j$, y(0) = i j by integrating and using the initial conditions to find the constants of integration.
 - (b) Find the arc length of that portion of the circular helix x = cost, y = sin t, z = t from t = 0 to $t = \pi$.
 - (c) Find the curvature and the radius of curvature $x = e^t \cos t$, $y = e^t \sin t$, $z = e^t$ at the point t=0.
- 34. A particle moves along a circular path in such a way that its x- and y-coordinates at time t are

$$x = 2 \cos t$$
, $y = 2 \sin t$.

- (a) Find the instantaneous velocity and speed of the particle at time t.
- (b) Sketch the path of the particle, and show the position and velocity vectors at time $t = \pi/4$ with the velocity vector drawn so that its initial point is at the tip of the position vector.
- (c) Show that at each instant the acceleration vector is perpendicular to the velocity vector.
- 35. (a) Find $\lim_{(x,y)\to(0,0)} \tan^{-1} \left[\frac{x^2+1}{x^2+(y-1)^2} \right]$.
 - (b) Let $f(x,y) = \begin{cases} -\frac{xy}{x^2 + y^2} (x,y) \neq (0,0) \\ 0 (x,y) = (0,0) \end{cases}$ Show that $f_x(x, y)$ and $f_y(x, y)$ exist at all points

(x, y)

(c) Use the method of Lagrange multipliers to find the dimensions of a rectangle with perimeter p and maximum area. (2 × 15 = 30 Marks)