	(Pages : 3) F - 240;
Re	eg. No. :
Na	ame :
	Fifth Semester B.Sc. Degree Examination, December 2018 (First Degree Programme Under CBCSS) CHEMISTRY Core Course – VI CH 1542: Inorganic Chemistry – III (2013 Admission Onwards)
Tin	ne : 3 Hours Max. Marks : 80
	SECTION – A
Answer all, each carries 1 mark.	
1.	The number of unpaired electrons in Fe ²⁺ is
2.	The general electronic configuration of inner transition metal is
3.	In the octahedral ligand field theory, the 3d orbitals will split intolevels.
4.	The hybridisation of XeF ₆ is
5.	The number of bridging CO present in Mn ₂ (CO) ₁₀ is
	Give an example for hexadentate ligand.

7. What is the co-ordination number of Cr in $NH_4[Cr(NH_3)_2(NCS)_4]$?

10. The groups satisfying the secondary valencies of a cation in a complex are

8. The purple colour of KMnO₄ is due to_____

9. Maximum oxidation number of Os is _____

called _____

(10×1=10 Marks)

SECTION - B

Answer any 8, each carries 2 marks.

- 11. Zn2+ salts are colourless. While Cu2+ salts are blue why?
- 12. Why do transition metal form coloured compounds?
- 13. The radii of elements from Cr to Cu are very close to one another. Why?
- 14. How haemoglobin differ from myoglobin ?
- 15. Explain why palladium does not readily form stable carbonyl clusters like Ni and pt unless stabilised by σ donor ligands like phosphene.
- 16. CuSO₄.5H₂O is blue colour while CuSO₄ is colourless. Why?
- 17. What is an ambidentate ligand? Give examples.
- 18. Zn, Cd and Hg are not considered as transition metals. Why?
- 19. A complex having scandium in +3 oxidation state was found colourless. Why?
- 20. What is inorganic benzene? How is it prepared?
- 21. What is the EAN of palladium in tetra chloro palladium (II) ion?
- 22. Explain the term hapticily with an example.

(8×2=16 Marks)

SECTION - C

Answer any 6, each carries 4 marks.

- 23. Explain why:
 - a) Transition metal forms alloys with other transition elements
 - b) Why do transition metals form coloured compounds?
- 24. Explain why Cu, Ag and Au, Zn, Cd and Hg have lower melting point than other transition metals.
- 25. Explain why $[CoF_6]^{3+}$ is paramagnetic while $[Co(NH_3)_6]^{3+}$ is diamagnetic.

- 26. Discuss the functions of haemoglobin and myoglobin.
- 27. What are inorganic polymers? Write a note on their structure and applications.
- 28. Magnetic moment of $[MnCl_4]^{2-}$ is 5.92 BM. Explain giving reason.
- 29. Why are d block elements called transition elements? Give their important characteristics.
- 30. Explain why $[CoF_6]^{3-}$ is paramagnetic while $[Co(NH_3)_6]^{3+}$ is diamagnetic.
- 31. What are silicones? Give their preparation and uses.

(6×4=24 Marks)

SECTION - D

. Answer any 2, each carries 15 marks.

- 32. a) Write a note on the structure of ferrocene.
 - b) Explain the synthetic application of Ziegler-Natta catalyst.
- 33. State a reason for the following:
 - a) The molecular shape of [Ni(CO₄] is not the same as that of [Ni(CN)₄]²⁻.
 - b) CO is a stronger complexing reagent than NH3.
- 34. a) What are inter halogens? Discuss the preparation and structure of any four inter halogen compounds.
 - b) What are carboranes? How are they obtained?
- 35. Write a note on function and mechanism of dioxygen binding of haemoglobin and myoglobin. (2×15=30 Marks)