Reg. No. :

Fourth Semester B.Sc. Degree Examination, July 2018 First Degree Programme Under CBCSS (Complementary for Chemistry and Polymer Chemistry) PY 1431.2 : ATOMIC PHYSICS, QUANTUM MECHANICS AND ELECTRONICS

(2013 Admission Onwards)

Time: 3 Hours

Total Marks: 80

SECTION - A

Answer all questions in one or two sentences. Each question carries one mark.

- 1. State Bohr's correspondence principle.
- 2. What is meant by energy level?
- 3. What are type II superconductors?
- 4. What is Meissner effect?
- 5. Why do we say that Rayleigh-Jeans formula was a failure?
- 6. What is photoelectric effect?
- 7. What is meant by emission spectrum?
- 8. Expand the acronym NMR.
- 9. What do you mean by ripple factor?
- 10. What is an avalanche breakdown?

(10×1=10 Marks)

SECTION - B

Answer any eight questions, not exceeding a paragraph. Each question carries two marks.

- 11. What are the postulates of Bohr atom model?
- 12. State and explain Pauli's exclusion principle.
- 13. Write a brief note on isotope effect.
- 14. List some important applications of superconductivity.
- 15. Explain de Broglie's wave hypothesis.
- 16. What is spatial quantization?
- 17. Write down time dependent and time independent Schrodinger equations.
- 18. Write a brief note on UV light.
- 19. Explain the basic idea behind ESR spectrometer.
- 20. What do you mean by emission and absorption spectra?
- 21. Write down the relations connecting α and β in the context of transistors.
- 22. Draw the circuit diagram for a full wave rectifier.

(8×2=16 Marks)

SECTION - C

Answer any six questions. Each question carries four marks.

- 23. Given that Rydberg constant is 1.097×10^7 m⁻¹, calculate the wavelength of the first line of the Balmer series.
- 24. Ionisation energy of hydrogen atom is 13.6 eV. Calculate the energy of photon corresponding to H alpha line and express it in electron volts.
- 25. Discuss applications of superconductors.
- 26. Calculate the energy corresponding to a photon corresponding to UV light of wavelength 100 nm. (Speed of light $c=3\times10^8$ m/s, Planck's constant $h=6.6\times10^{-34}$ Js.)

- 27. In a half wave rectifier, the load resistance is 1 k Ω , the forward resistance of the diode is 100 Ω and the input alternating voltage is 325 volts. Find the peak value and r.m.s. value of the output current.
- 28. A silicon diode has a bulk resistance 2.5 Ω and a forward current of 10 mA. What is its forward voltage if its knee voltage is 0.62 V.
- 29. The base current and emitter current of a silicon transistor in common base configuration are 50 μ A and 2mA respectively at an instant. Find its collector current and current amplification factor.
- 30. A transistor in a common emitter configuration with β = 100 delivers a base current of 100 μ A. Determine its collector current and emitter current.
- 31. Write a note on the concept of wave function in quantum mechanics. (6×4=24 Marks)

SECTION - D

Answer any two questions. Each question carries fifteen marks.

- 32. Discuss the vector atom model, various quantum numbers and the shell structure.
- 33. Derive the expression for energy levels for a particle in a one dimensional box.
- 34. Write an essay on the electromagnetic spectrum.
- 35. With neat diagrams explain the circuit and operation of CE amplifier.
 (2×15=30 Marks)