(Pag	es	:	4)
------	----	---	----

Reg. No. :	
Name:	

Fifth Semester B.Sc. Degree Examination, December 2023 First Degree Programme under CBCSS

Physics

Core Course VII

PY 1543 : ELECTRONICS

(2018 Admission Onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - A

Answer all questions in one or two sentences. Each question carries 1 mark.

- A Norton's equivalent circuit consist of
- Distinguish between extrinsic and intrinsic semiconductors.
- 3. What does the Q point of a transistor represent?
- 4. What is the basic feature of a class a amplifier?
- 5. What happens to stability and bandwidth with negative feedback?
- A 2 kHz audio signal is used to frequency modulate a 80 MHz carrier causing a frequency deviation of 10 kHz. Determine the modulation index.
- 7. What is the decibel equivalent of the CMRR 10⁵?
- 8. Why does UJT be known as a breakdown device?

- 9. What is meant by transconductance of JFET?
- Draw the circuit diagram of op-amp integrator.

SECTION - B

Answer any eight questions, not exceeding a paragraph. Each question carries 2 marks.

- State Kirchhoff's laws.
- Explain the characteristics of a zener diode.
- Explain the features of depletion barrier in pn junctions.
- Define the stability factor of a transistor. Explain its significance.
- 15. Briefly mention the different classes of distortion in amplifiers.
- Compare an oscillator and an amplifier.
- 17. Why do we need modulation? Explain.
- 18. Give a brief description on the demodulation process of AM signals.
- 19. Draw the drain characteristics of JFET without any bias and mark the regions
- 20. Draw the block diagram of DE MOSFET.
- 21. Describe the construction of UJT.
- 22. Derive the expression of voltage gain of a non-inverting amplifier.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Answer any six questions. Each question carries 4 marks.

- State maximum power transfer theorem. Find the efficiency under this condition.
 Give an application.
- 24. In a half wave rectifier with shunt capacitor of $10\,\mu F$, the load is varied between $1\,k\Omega$ and $10\,k\Omega$. Determine the ripple factor. Is there any change in ripple factor if the capacitor is replaced with $100\,\mu F$ capacitor?
- 25. In a transistor amplifier, when the signal changes by 0.03 V, the base current changed by $11\mu A$ and the collector current by 1.1 mA. Find the current gain, input impedance and ac load if R_C = 4 k Ω and R_L = 8 k Ω .
- 26. A Si transistor working in the voltage divider bias method has the following parameters. V_{CC} = 15 V, R_1 = 10 k Ω , R_2 = 5 k Ω , R_C = 1 k Ω , R_E = 2 k Ω . Find out the operating point and plot the load line.
- 27. Determine the power efficiency of push-pull amplifiers.
- 28. In a negative feedback amplifier, A = 100, β = 0.05 and V_i = 10 mV. Find (a) the gain with feedback (b) output voltage (c) feedback factor and (d) feedback voltage.
- 29. Plot the amplitude modulated waves with the following modulation factors 0, 0.5, 1 and 1.5.
- 30. An AM wave has 4 V peak value for the carrier and 2 V peak value for both lower and upper sideband components. If the AM wave drives a $2 \text{ k}\Omega$, resistor, find the power delivered to the resistor by (a) carrier and (b) the sideband components. What is the total power delivered?
- 31. Find the output voltage of an op-amp inverting adder for the following set of input voltages and resistors. $Rf = 10 k \Omega$, $v_1 = -1V$, $v_2 = 1V$, $v_3 = 2V$, $R1 = 1k\Omega$, $R2 = 1.5 k \Omega$, $R3 = 1.2 k \Omega$.

 $(6 \times 4 = 24 \text{ Marks})$

- 32. Compare the features of pn junction diode rectifiers with suitable diagrams.
- Plot the input, output and current transfer characteristics of CB, CE and CC configurations of a transistor and briefly explain it,
- 34. Briefly explain various oscillator circuits.
- 35. Explain the circuit and operation of differential amplifier.

 $(2 \times 15 = 30 \text{ Marks})$